

Experimental Research

Development of a new large area Micromegas detector and its ToRA-based readout electronics for AMBER experiment at CERN

M. Alexeev on behalf of the design working group Università di Torino & INFN Torino & CERN

Apparatus for Meson and Baryon Experimental Research (AMBER, NA66)

MPGD 2024 | Large area MM and ToRA ASIC @ AMBER

AMBER program

	Beam	Target	Additional Hardware	
Proton radius measurement	100 GeV muons	high pressure Hydrogen	active target TPC, tracking stations (SciFi, Silicon)	1 /ed)
Antiproton production cross section	50 GeV - 280 GeV protons	<i>LH₂, LHe</i> one (2023 – 2024)	Liquid He target	hase
Drell-Yan measurements with pions	190 GeV charged pions	Carbon, Tungsten	vertex detector	
Drell-Yan measurements with Kaons	~100 GeV charged Kaons	Carbon, Tungsten	vertex detectors, 'active absorber'	ation)
Prompt photon measurements	> 100 GeV charged Kaon/pion beams	LH2, Nickel	hodoscopes	se 2 irepar
K-induced spectroscopy	50 GeV - 100 GeV charged Kaons	LH ₂	recoil ToF, forward PID	Pha (in p
Meson radii	50 GeV to 280 GeV charged pions and Kaons	#/K		

AMBER APXs (2023-2024)

Antiprotons arise from spallation processes and <u>possible</u> DM decays. Their flux interpretation needs good parametrization of the standard production in the typical occurring reactions.

Minimum bias trigger: beam trigger with veto on nonscattered beam particle

The major uncertainties in the current antiproton flux interpretation stem from the poor knowledge of the antiproton production from prompt reactions (mainly p+p and p+He) and from antineutron decays. <u>AMBER collected data at different collision energies ($\sqrt{s_{NN}} = 10.7 - 21.7$ GeV) to precisely measure p+He, p+H and p+D.</u>

AMBER PRM (2025/2026)

Proton-radius puzzle

Missing: muon-proton with E_{μ} of 10 - 100 GeV

- Test of lepton universality
- Different systematics compared to others

Proton Radius Measurement @ AMBER

- Aimed precision of charge-radius below 1%
- Aimed Q²-range: 0.001 GeV²/c² to 0.040 GeV²/c²

AMBER DY (post LS3)

(qu)⁴ (up) qa/qx^µ 0.15 02 NA3-like experiment π+ 190 GeV Proposed experiment 0.1 0.05 0₀ 02 0.4 0.6 0.8 Χ-2.5 $\Sigma_{\rm sea}/\Sigma_{\rm val}$ NA3 extraction (DY π^* and π^- data) olection for 280 days on C-targe 4.3<M/(GeV/c)<8.5 0.5 0.6 0.7 0.8 0.1 0.2 0.9 0.3 0.4 $\Sigma_{\rm sea}/\Sigma_{\rm val}$ 3.8<M/(GeV/c)<8.5 0.2 0.5 0.6 0.8 0.4 0.7 0.9 0.1 0.3

Sea quark content of pion can be accurately measured at AMBER for the first time

Pion structure in pion induced DY Expected accuracy as compared to NA3

Studying of the di-muon angular distributions (λ , μ , v) provides a direct input to the EHM

• $\Sigma_V = \sigma^{\pi^- C} - \sigma^{\pi^+ C}$: only valence-valence

- $\Sigma_S = 4\sigma^{\pi^+ C} \sigma^{\pi^- C}$: no valence-valence
- Collect at least a factor 10 more statistics than presently available
- Minimize nuclear effects on target side
 - $\bullet\,$ Projection for 2 \times 140 days of Drell-Yan data taking
 - π^+ to π^- 3:1 time sharing
 - 190 GeV beams on Carbon target $(1.9\lambda_{int}^{\pi})$
 - Improvement of shielding to double the intensity is under investigation

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/ c^2)	DY events
E615	20 cm W	252	π^+ π^-	$\begin{array}{c} 17.6\times10^7\\ 18.6\times10^7\end{array}$	4.05 - 8.55	5000 30000
NA3	$30\mathrm{cm}\mathrm{H}_2$	200	π^+ π^-	2.0×10^7 3.0×10^7	4.1 - 8.5	40 121
	6 cm Pt	200	π^+ π^-	2.0×10^7 3.0×10^7	4.2-8.5	1767 4961
NA10 -	120 cm D ₂	286 140	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	7800 3200
	12 cm W	286 194 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	$110 \mathrm{cm} \mathrm{NH}_3$	190	π^{-}	7.0×10^7	4.3 - 8.5	35000 52000
MBER -	75 cm C	190	π^+	1.7×10^7	4.3 - 8.5 4.0 - 8.5	21700 31000
		190	π^{-}	$6.8 imes 10^7$	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^{7}	4.3 - 8.5 4.0 - 8.5	24100 32100

Isoscalar target + Both positive and negative beams + High statistics

Probing valence and sea quark contents of pion at AMBER Expected statistics 8 to 20 times higher than available

Why we work on the MM project

In the present AMBER setup one of the main tracker are the MWPC stations

- Present situation
- ✓ Triggered DAQ

✓ Degraded detectors

✓ Limited Team

Reasonable situation

Trigger less DAQ

□ Maintenance available for a long period of time

Collaboration between, experts, ASIC teams and CERN MPT & GDD workshops

Decided path to the future

Base requirement

Characteristics of the COMPASS MWPC detectors

	A-type	A*-type	B-type
# of chambers	7	1	6
Active area (cm^2)	178×120	178×120	178×90
# of layers/chamber	3	4	2
Planes	X, U, V	X, U, V, Y	X, U/V
Dead zone \oslash (mm)	16–20	16	22
Wire pitch (mm)	2	2	2
Anode/cathode gap (mm)	8	8	8
# of wires/plane	752	752 (X, U, V), 512 (Y)	752

> To reasonably match the existing MWPCs

 \succ To see if we can be better <u>at low cost</u>

MPGD to substitute it?

Concept design

Micromegas based detectors

Very tight schedule

17/10/2023

- Not exceeding the base PCB technology sizes
- Reduced material in the acceptance
- Reproduce the aged MWPCs performance
- Eventually add a pixel centre to cover the whole surface

Reduce the R&D

time and risks

Full size lateral module prototype in autumn 2024 \succ

Full size central module prototype in autumn 2025/2026 \succ

FEB for short V-Strips

512 mm

Lateral module prototype design

Lateral module prototype production

Readout PCB design and production

X-coordinate R/O plane

UV-coordinate R/O plane

- 512 strips
- 1mm pitch
- 750 um width
- 4 FEBs: 512 fe channels

- 1280 strips
- 1mm pitch
- 250 um U strips width
- 150 um V strips width
- 10 FEBs: 1280 fe channels

Lateral module prototype testing

Transported and installed in the AMBER experiment 12.10.24

We express our gratitude to MPT and GDD labs colleagues and all the community that supports us in the task

Delivered on 11.10.24

Lateral module prototype testing

<u>2024</u>

- High Voltage stability
- Noise performance & shielding optimisation
- First data (beam/cosmics)
- \blacktriangleright Compare ArCO₂ (93/7) and ArCO₂Iso(93/5/2)

<u>2025</u>

- We will have our parasitic setup in the AMBER spectrometer for the whole beam period
- We need to achieve a stable operation/understand the problems before starting the layout of the Central module
- First test with the ToRA ASIC

The 2024 RO system

- TIGER ASIC based stand alone
- The DAQ has been verified with a STRAW detectors setup
- The updated FE cards did not present noise data communication problems
- We have 6 cards available, 8 are on order (delayed)
- DLVPC v2 cards has been assembled at CERN
- Some safety/production issues with the FireFly cables. MIGHT be worth considering to change the data cable for the next FE designs

AMBER TIGER-based readout chain:

Future RO considerations

Stand-alone and fall-back option

- Based on the TIGER ASIC
 - Uses existing equipment
 - Well known
 - Known issues
 - Limited ASIC availability

Base option for the 2025 AMBER integration

- Based on the ToRA ASIC
- > All the elements are new

ToRA ASIC

- MPGD and Wire detectors compatible
- Target specific application with limited complexity
- Reuse existing solutions
- 2 step design

Detector	MM	Straw	
Channels/ASIC	64	64	
Power/channel	\leq 5	\leq 10	mW
Input capacitance	\leq 150	20-100	pF
Input charge	1-100	1-1000	fC
Input impedance	\leq 50 Ω	tbd	Ω
Max rate	<u>≤</u> 2	\leq 0.18	MHz
Peaking time	150	75-150	ns
Time resolution	1-2	≤ 1	ns
Charge resolution	8	10	bits
Gain	12	2	mV/fC
ENC @10 pF	500-1000		e [—]
ENC @150 pF	1000-2000		e [—]
ENC @60 pF		3000	e [—]
Threshold range	tbd	0-15	fC
Clock frequency	200	200	MHz

Analog part (single channel)

- Charge Sensitive Amplifier
 - Fours gains : 2,6,8 and 12 mV/fC
 - Possibility to accept inputs from both polarities

Shaper

- 3rd order, one real and two cc poles
- Programmable peaking time : 25, 50, 150 and 250 ns
- Double threshold signal detection
 - Lower threshold for time measurement, higher threshold for validation
 - Peak detector signal
 - Peak holder for charge measurement (via ToT)
 - Linear ToT measurement under evaluation

ASIC structure

- Common time stamp distributed to all channels
- 3 data register for time acquisition
- 2 configuration registers
- Threshold and discharge current fine tuning

Output data format

- Data output in 32 bits words over 200 Mb/s serial links
- It can be configured to use 1 or 2 links
- Frame length : 20.48 µs at 200 MHz
- Data within a frame are packed within a frame header and a frame trailer
- Frame header contains chip id and frame number
- Frame trailers contains the number of valid samples and CRC

Packet type	Header 1	Header 2	Data
	1 bit	3 bit	28/31 bits
Header	1	010	ChipId[6:0] Reserved[12:0] FrameN[7:0]
Trailer	1	101	DataCnt[11:0] CRC[15:0]
Sync	1	000	1100 1100 1100 1100 1100 1100 1111
Data	0	Region[2:0	0] Channel[2:0] Le[11:0] Pk[5:0] Te[6:0]

ToRA is preparing to go silicon

Options for the ToRA v2

• Odd/even channel individual configuration

• Odd/even channels interconnections

- If better time resolution is needed
 - Channel or region-level 8-tap delay line
 - Delay controlled by a global DLL
 - Time resolution 180 ps r.m.s.

Ideas are welcome

Conclusions

ToRA v1 ASIC preparing for submission

Mon Oct 14 17:48:13 2024 1

250 ns

25 ns

Spares

ToRA (Torino Readout for AMBER) ASIC development remark

- > Main idea to have a fully digital relatively simple ASIC adapted to the MPGD and Wire detectors
- The design approach seems to be agreed

V1(sub. 2024) – <u>base features set</u> targeting the MM
V2(sub. 2025) – <u>extended features set</u> for MM + Wire (time+charge)

- We have some ~2 mouth delay due to the decision taken in June to change from 110 nm node to the 65 nm
- Presently the submission is expected for 11.2024
- Delivery expected in 01.2025
- Characterization DAQ manpower has been allocated

Any contribution interest to test is welcome, pls. contact us

V1 specific		
Node		65nm, TSMC
Size, mm2		~4x3
Power, mW	1	~10/ch
Ref_CLK, N	ЛНz	40-200
Sustained r	ate on 64ch, kHz	
Doble hit re	solutin on ch, ns	10
CH config		
•		
	Impedance	<= 50 Ω (const) to 1 GHz
	Coupling	DC
	Polarity	Pos/Neg
	Noise, ENC	1000 @ 150pF
	0 ·	07.0
	Gain, mV/fC	2,7,12
Shpaer		
	Peakig time, ns	25/150/250
TDC		
	type	Thr. Crossing (rising edge)
	Resol (bin), ns	5 ns
ADC		
	type	Falling edge - Peak time stan
	Discharge DAC	8 bit resol

Main ideas

As simple as needed	Design in 2 steps based on feature set			
•	V1 (2024)	V2 (2025)		
Based on existing design	Limited flexibility	Implement MPGD+Wire		
	Power may not be optimised	Power tuning (moderate)		
Tuned to limited use cases	Mostly full backend	Inter channel commutation		
	Complete single channel structure	Time resolution???		

• Trigger less

.

Motivation

AMBER Phase-1 running plan

Milestones:

- 1. May 1st 2023, 2024 Antimatter production Run (Std. DAQ)
- 2. Sep. 1st 2024 PRM Test (FriDAQ, very limited setup)
- 3. June. 1st 2025 PRM Pilot (FriDAQ, limited setup)
- 4. May. 1st 2026 PRM Physics (FriDAQ, PRM setup)
- 5. Sep. 1st 2025, 2026 DY Test (FriDAQ, all trackers + mu id)
- 6. May 1st 2029/30 DY Run (FriDAQ, full Drell-Yan setup)

LHC and Injectors (PS, SPS) long term schedule

Revised timeline being considered

- Provisional schedule
 - Feasibility and acceptability being evaluated
- □ Start in October 2026, ions run in September 2026
- Beam back in the LHC in July 2030
 - LHC experiments caverns closure : 16.06.2030
 - LHC beam vacuum valves opening: 28.06.2030

LS4 delayed by one year

