
Performance of resistive  MPGDs 
for hadron calorimeters

The 8th International Conference on Micro-Pattern Gaseous Detectors

Oct.14th - Oct.18th 2024 
USTC·Hefei, China 

A. Zaza1,2 , A. Colaleo1,2 , A. Stamerra1,2 , A. Pellecchia2 , F. M.Simone 1,2 , 
L. Generoso1,2 , L. Longo2 , M. Maggi 2 , M. Buonsante 1,2 , P. Verwilligen 2 ,

R. Radogna1,2 , R. Venditti 1,2 , on behalf of IMCC
D. Zavazieva 3 , G. Sekhniaidze 4 , L. Moleri 3 , M. T. Camerlingo 2 , M.

Borysova3 , M. Iodice 5 , M. Bianco6

1) University of Bari
2) INFN, sezione di Bari
3) Weizmann Institute of Science
4) INFN, sezione di Napoli
5) INFN, sezione di Roma3
6) CERN



Outline

• Motivations
• Simulation studies

→Standalone simulation in G4
→Simulation within Muon Collider framework

• Characterizations of MPGD prototypes
→ Efficiency, Uniformity

• Development of a calorimeter prototype
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• Current tendency for R&D on calorimeters: 
High Granularity for Particle Flow
o 5D calorimeter --> (x,y,z, t) + Energy reconstruction

• Current technology: Silicon, Scintillators, RPCs as
active layers

MPGD-HCal at Future colliders
GOAL for future colliders:

Jet energy resolution for Z/H 
separation:

σE /E< 3% - 4%

Proposal: high-rate and possibly ecofriendly alternative to 
RPC, the resistive MPGDs as active layers of sampling 
calorimeter

Project initiated in 2021 within the RD51 collaboration
and currently framed within the DRD6/DRD1 
collaborations

3MPGD2024

J. Marshall, M. Thomson arXiv:1308.4537
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Why MPGDs for calorimeters?

• Cost-effectivness for large area instrumentation

• Radiation hardness (up to several C/cm2)

• Discharge rate non impending operation

• Rate-capability O(MHz/cm2)

• Flexible space resolution O(100 µm)

→ allow for high granularity

• Time resolution with MIPs of few ns

Idea already investigated in 

• Calice collaboration:  sampling calorimeter using RPC 
and also tested MicroMegas
• SCREAM collaboration: a sampling calorimeter 
combining RPWELL and resistive MicroMegas

4MPGD2024



Physics case: HCal at Muon Collider

Challenges :
Deal with Beam Induced Background in HCAL:
- Mostly photons (96%) and neutrons (4%)
- Large asynchronous components
- Occupancy ~ 0.06 hit/cm2 (x10 the one at HL-LHC)

Requirements:
• Radiation hard technology

- total ionizing dose: 10-5 GRad/year
• Good time resolution (O(ns))
• Good energy resolution

- ~ 10% / √E for ECAL
- ~ 55% / √E for HCAL

• Fine granularity (1 – 3 cm2)
• Longitudinal segmentation

Towards a Muon Collider arXiv:2303.08533
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Muon collider: Multi-TeV µ+µ- collider in compact circular
machines, as possibility for future collider after HL-LHC

https://arxiv.org/abs/2303.08533


Strategy for the R&D
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Simulation studies



HCal standalone simulation

Standalone Geant4 simulation technology-independent
• Geometry of single layer: 

o 2 cm of iron for absorbers
o 5 mm gas (Ar/CO2) 

• Readout granularity 1x1 cm2

Result: longitudinal containment in 10 λ, transversal in 3 λ 

λ ~ 26 cm

Energy resolution simulated in two scenarios:
• Digital calorimeter: shower energy proportional to total 

number of hits 
• Semi-digital calorimeter: hits are weighted based on three 

thresholds Eπ = ⍺ N1 + β N2 + γ N3

Result: 
• resolution at 8% for Eπ ~ 80 GeV with semi-digital readout
• resolution saturates at  14% for Eπ ~ 30 GeV for digital readout

8MPGD2024



HCal simulation within MuCol framework

Simulation of BIB at a center of mass energy of 1.5 TeV
• BIB containment within the first 20 layers 
• Uniform distribution of arrival time in the range 7-20 ns
• Signal arrival time peaks at ~ 6ns;
• Discrimination possible for t > 9/10 ns 

→ achievable with MPGD detectors

Energy resolution simulated:
• π guns up to 100 GeV
• Selecting π starting shower in HCal

Result: 
• overall better performance with semi-digital readout

𝜎/E = 46%/√E ⊕ 12%
• resolution saturates with digital readout

9MPGD2024



Characterization of MPGD 
prototype



MPGD prototypes
MPGD technologies:
• 7 µRWELL 
• 4 resistive MicroMegas
• 1 RPWELL
• Detector layout: 20x20 cm2

o ~6 mm drift gap
• Common readout board: 1x1cm2 pad→ 384 pads
First characterizations in terms of effective gain using X-ray 
performed in lab in Frascati, Roma3, Bari, Napoli, Weizmann
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MicroMegas:
G = 104 at
Ea = 50 kV/cm
in Ar/CO2/C4H10

µRWELL:
G = 104 at
Ea = 140 kV/cm
in Ar/CO2/CF4

1 cm
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MPGD prototype - test beams at SPS 

GOAL: Test of readout layers in terms of response to MIPs

• Tracking: XY strips TMM (+ GEM at 2024 TB campaign) 
• Pad chambers under test (rMM, µ-RWELL, RPWELL)
• Ar/CO2/CF4 : µRWELL - Ar/CO2/iC4H10 : resistive MM
• Particles O(100GeV) µ beam
DAQ chain:
• APV25 for charge and time measurements
• SRS back-end

Pad chambers

Trigger + tracking 

12

MPGD 

APV25

APV25

APV25

APV25

SRS

No absorbers
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Detector performance – 2023 results
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Y-Z view of a track 
reconstructed with 4 
chambers out of 5

µ-RWELL
MicroMegas

Residual distribution in 
agreement with detector 
granularity
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Analysis workflow for 2023 TB:
• Tracking system unused -> for each detector, tracks reconstructed with 

clusters from 5 pad chambers out of 6
• Observed high probability of cross-talk between pads due to routing of 

readout vias from pads to front-end
• Patched offline by clustering pads based on charge sharing fraction

High MIP detection efficiency (detectors always operated at plateau)



Detector performance – 2024 results

14

2024 TB setup: tracking system +  8 pads chambers under test (3 rMM + 5 µRW)

Analysis workflow for 2024 data
• Track reconstructed with tracking system (TMMs)
• Clustering algorithm developed ad hoc to exclude x-talk pads

14MPGD2024

Residual distribution 
in agreement with 
expected resolution 
with digital readout

Occupancy plot of hits matching with tracks 
for µ-rwell

Dead areas due to PEP 
lines in µrwell



Detector performance – 2024 results

15

2024 TB setup: tracking system +  8 pads chambers under test (3 rMM + 5 µRW)

Results
• Full turn-on efficiency curve measured for both technologies 
• Plateau > 90% for MM, ~ 75% for µ-RWELL 

Ed = 0.5 kV/cm
in Ar/CO2/C4H10

Ed = 1.8 kV/cm
in Ar/CO2/CF4

MPGD2024



Detector uniformity

16

Response uniformity crucial parameter for energy reconstruction for large area detector

Uniformity measured using hits matching with tracks
• Good uniformity for MicroMegas and µRWELLs
• Spotted non-uniformity regions in 2 µRWELLs (out of 5 tested)

- seen in 2023 data and checking for 2024 data

Charge deviation in MicroMegas
MicroMegas-Bari

Good uniformity for MicroMegas (σ/µ ~ 10%)
Slightly worse uniformity for µ-RWELL (σ/µ ~ 16%)​ 

Charge deviation in µRWELL-Frascati1
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Development of a calorimeter
prototype



MPGD-HCAL prototype – PS test beam 

HCAL prototype ~ 1 𝜆I  (8 active layers)
Data taking based on analog FE (APV25 + SRS)

Runs at different π- energy (up to 11 GeV)
• Two TB campaigns: August 2023, July 2024
• Data analysis ongoing
• Developed G4 simulation for the small prototype, including a 
digitization algorithm to account for charge-sharing among adjacent pads
and detector efficiency

With absorbers

18MPGD2024



Event selection in Monte Carlo and data
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Event selection criteria supported 
by simulation using MC truth
• MIP-like events:

- single hit in each layer
• Shower events starting from 

layer 3:
- more than 4 hits per layer 

from layer 3

Distribution of the total number 
of hits in all active layer from 
the experimental data obtained
- excluding first 2 detectors 

(faulty APVs)
- counting only once along 

vias direction to avoid x-talk 
pads (detectors operated at 
high gain for APVs)

Before the 
selection After the 

selection

MIP-like events Shower events 

Peak at ~ 10 hits 
-> MIP-like events

Number of hits for all layersNumber of hits for all layers

PS Data

PS Data

Simulation Simulation
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2023 Data-MC comparison
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Good agreement between data and Monte Carlo

Successful validation of MPGD-HCal prototype with 8 layers of 20x20 cm2

• Distribution of total number of hits for hadronic shower events for experimental data and Monte Carlo 
simulation

• Distributions fitted with Gaussian to extract mean and sigma

20MPGD2024



MPGD-HCAL prototype – 2024 Data

21

Number of hits for all layers

Response function: Total number of hits 
increases as a function of the energy

Fitted with gaussian around 
the core to extract µ value
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Lessons learnt
Detector design
• Observed cross-talk due to readout vias routing. 

In next prototype batch:
→ shorten R/O vias at the expense of equalizing signal delays
→ increased distance between planes of RO pads and vias

Readout electronics
• Legacy readout electronics based on APV25 supported by MPGD community is getting 

less reliable and available
→ Frequent damage (ESD or discharge) on input channels
→ Medium setups (> 20 chips) not easily supported in back-end and DAQ
→ APV25 out of production

Next steps: Planning to move to front-end VMM3 and 2 pad µRWELL already tested in 
recent TBs with VMM3 (see Darina's talk)

Operational experience and detector characterization
• Working points (amplification field, drift field) to be optimized for better energy 

resolution to be used in semi-digital mode

22MPGD2024



Conclusions and next steps
Developments of MPGD-HCAL ongoing in simulations and hardware
• Preliminary results on BIB studies show MPGD technologies are good candidates for BIB rejection for Muon collider
• A semidigital readout allows to achieve the requirements needed in the context of a particle flow approach
• Preliminary results on the calorimeter cell prototypes show good agreement between Data/MC

Plans for 2024-2025
• Consolidating results with present prototypes in two test beams in 2024:

o SPS
→ full efficiency vs gain
→ response uniformity
→ timing (ongoing)

o PS: test of a fully equipped 8 MPGD layers
• 4 large detectors (50x50 cm2) to be built

o Design currently under revision
• Redesign of modular mechanics
• Started common project with Crilin (ECAL for MuCol): expected common test beam at the 

end of 2025

23MPGD2024
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Particle-Flow Calorimetry

Particle Flow approach
• Reconstruct individual particles of the jets
• Exploit the most accurate subdetector system to 

measure each particle
o ~ 60% charged hadrons measured by tracking 

system
o ~ 30% photons measured by ECAL
o ~ 10 % of jet-energy carried by long-lived neutral 

hadrons measured in HCAL
• High granularity for calorimeter system is required

J. Marshall, M. Thomson arXiv:1308.4537
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The Multi-TeV Muon Collider experiment

Anna Stamerra – IPRD 2023

Section of the Muon Collider 
experiment:
- Tracking system
- ECAL
- HCAL
- Magnet return yoke + Muon

System

Towards a Muon Collider arXiv:2303.08533

Challenges:
• muon is an unstable particle

intense flux of background particles: beam-induced background (BIB).

Advantages:
• multi-TeV energy range in compact circular machines;
• well defined initial state and cleaner final state;
• all collision energy available in the hard-scattering process.

Tracks of BIB particles in interaction region

MPGD2024 26

https://arxiv.org/abs/2303.08533


Digital vs Semi digital readout

MPGD2024 27



Energy reconstruction: Semi-digital Readout (SDHCAL)
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• Digitization: defined multiple 
thresholds

• t1 = 0.01 MIP

• t2 = 4 MIP

• t3 = 12 MIP

• Reconstructed energy: 
Eπ= 𝛂N1+𝜷N2+𝜸N3 with:​​​



HCal simulation within MuCol framework
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Cluster reconstruction

30

High probability of cross-talk effect 
observed among adjacent pads due to 
routing of the vias connecting pads to the 
connectors

Developed ad-hoc clustering algorithm
based on charge sharing criterium
• Selected pad with highest charge Qmax

• Add a second pad if Q = 50% Qmax

X-Y view of a single 
chamber with a cross-talk 
event

C
h

arge (A
D

C
)

MPV1

MPV2

min(MPV1 –MPV2)

Pad multiplicity 1

Pad multiplicity >1

True 
hit

cross-
talk 
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SPS 2023 test beam – Track reconstruction
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Residual distribution: hitprop – hitrec

hitpro: (x,y) on chamber extrapolated from the track
hitrec: (x,y) recostructed on the test chamber

Track reconstructed with clusters from 5 out of 6 
pad chambers, excluding the one under test

Residual distribution in 
agreement with detector 
granularity

X-Z view of a track 
reconstructed with 4 
chambers out of 5

Y-Z view of same track 

X residual distribution Y residual distribution

Cluster matching with track:
hitprop – hitrec < 9 mm ~ 3x𝜎s

RMS: 1.27 mm RMS: 2.27 mm

31MPGD2024



MPGD2024 32

Primary currents measured in Bari with x-ray
as a function of the drift field



Gain – 2024 Data
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Gain measured with µ at SPS test beamGain measured in Bari with x-ray with silver target 
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Pad multiplicity - 2024 Data

Pad multiplicity along Y for clusters 
matching with tracks Pad multiplicity vs HV for µrwell



MPGD-HCAL prototype - G4 simulation setup 
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• Small calorimeter geometry implemented
• 8 layers of alternating of 2 cm stain-less steel absorbers and MPGD

- First 2 layers with 4 cm absorbers to increase number of 
showers developing early

• 20x20 cm2 active surface
• 1x1 cm2 pad granularity

• Pion gun of energy range available at PS (4 – 8 GeV)

• Digitization algorithm implemented to account for charge-sharing among 
adjacent pads and detector efficiency

Digitization algorithm

Shower containment

x 8 layers

Avalanche
spread

37MPGD2024



MPGD-HCAL prototype – Faulty APVs
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Simulation – beam profile per layer Experimental data– beam profile per layer
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