

THE CYGNO EXPERIMENT

Davide Fiorina

Gran Sasso Science Institute & INFN LNGS

On behalf of the CYGNO collaboration

D. Fiorina - GSSI & INFN

S

GRAN SASSO

G

It's a Dark Universe

ENERGY \rightarrow Excess would result in falling exponentials.

TIME → Results in a few % annual modulation.

Assumption

→ Dark Matter is made of
Weakly Interacting Massive Particles.

- $\Box \quad \mathsf{SM} + \chi \to \mathsf{SM} + \chi$
- Direct detection of nuclear recoil

It's a Dark Universe

ENERGY → Excess would result in falling exponentials.

TIME → Results in a few % annual modulation.

Assumption

→ Dark Matter is made of
Weakly Interacting Massive Particles.

- $\Box \quad \mathsf{SM} + \chi \to \mathsf{SM} + \chi$
- Direct detection of nuclear recoil

Directionality of the DM flux

This is the only generic and unambiguous terrestrial signature of DM that results solely from the assumption that we live inside a DM halo. <u>The future of directional searches, Ciaran O'Hare</u>

- Only signature of DM halo presence
 - Rejection of background isotropy
 - Identification of solar neutrinos
 - Only way to do DM astronomy

14/10/2024

He/CF₄ 60/40

He/CF₄ 60/40

He/CF₄ 60/40

1.Independent energy measurement. 2.Electrons times of arrival ⇒ dZ coordinate (track's tilt) **Straight track** 1200 F 1000 800 600 E 400 Tilted track 1000 800

400

14/10/2024

He/CF₄ 60/40

14/10/2024

D. Fiorina - GSSI & INFN

7

Detector PoV

14/10/2024

CYGNO roadmap

LIME – Long Imaging ModulE

50L single-side TPC Commissioning done in LNF in 2021/22

33x33 cm² standard triple GEM

- D/T1/T2: 500/2/2 mm 1/2.5/2.5 kV/cm
- VGEM: 440V

Imaging:

- ORCA FUSION camera 2304x2304 pixel granularity 155 x 155 um²
- 4 PMTs on the four edges
- Schneider Xenon lens (F=0.95, f=25.6mm)

Work at 910 mbar (atmospheric)

- He/CF4 60/40 in recirculation mode (5+20 L/h fresh+recirculated)
- Oxygen+Nitrogen+Radon filters

DAQ based on MIDAS

- Single USB 3.1 readout from camera
- Fast+slow VME ADCs for PMTs waveforms

Trigger

- >2 PMT over the threshold (FPGA-based)
- Save 300ms exposed camera picture

55Fe source stability/calibration

- At different drift distances
- Standard candle for intrinsic working parameters

 $\sigma_T \propto \sqrt{z}$

14/10/2024

LIME – Long Imaging ModulE

Reconstruction:

<u>Directional iDBSCAN to detect cosmic-ray tracks for the CYGNO experiment – IOPscience</u> <u>A density-based clustering algorithm for the CYGNO data analysis - IOPscience</u>

Based on the iDBscan algorithm + Directional cluster search

Digitization:

• Fast simulation to mimic the response function without a full simulation

CYGNO data managing

Data handling of CYGNO experiment using INFN-Cloud solution (epj-conferences.org)

- Beta tester of the INFN-Cloud project
- Data streamlined on cloud, where it is reconstructed and stored
- Thoughput ≈ 3 Mb/s
- Reconstruction queue 40CPUs

14/10/2024

LIME performance

External background consistent with MC With increasing shield, we highlight a non-expected background.

Prove we can operate such a detector underground

<u>Study and improve out MC chain</u>

Phase	Shielding	GEM V [V]	# pictures	Live time [s]	Rate PMTs [Hz]
Run 1	None	420	285665	175627	30
Run 2	4 cm Cu	440	297992	191382	3.5
Run 3	10 cm Cu	440	171579	191471	1.6
Run 4	+40 cm H2O	Great external neutron suppression \Rightarrow Under analysis			

Main Suspect: Alpha Contamination by Radon

14/10/2024

Nuclear Recoils

14/10/2024

14

D. Fiorina - GSSI & INFN

Electron Recoils Nuclear Recoils

D. Fiorina - GSSI & INFN

MIP (muons and high energy electrons) Electron Recoils Nuclear Recoils

We have access to many variables related to the signal shape!

We have access to many variables related to the signal shape!

G. Dho Impact of a strong electric field below the GEM on light yield and saturation in a He:CF4 based Time Projection Chamber

Saturation is clearly present in LIME! And it affects the ER/NR discrimination

Convolution Neural Network

Atul Prajapati Thesis

- Training on **MC** using multiple shape variables
- Promising results beyond • traditional analysis

1.0

D. Fiorina - GSSI & INFN

G. Dho Impact of a strong electric field below the GEM on light yield and saturation in a He:CF4 based Time **Projection Chamber**

Saturation is clearly present in LIME! And it affects the ER/NR discrimination

14/10/2024

CYGNO_04

CYGNO_04 TDAQ

<u>**1° Level Trigger - Trained CNN classificator** Individuate for every image if it contains signals or not</u>

<u>**3° Level**</u> PMT association – Bayesian FIT

Associate each PMT waveform to the correct camera cluster

<u>2° Level</u> Trigger+Reco – U-Net CNN

 \rightarrow Signal/Noise classification on the pixels basis

Expected Pipeline for commissioned CYGNO_04

- Reduce throughput
- Imporved reconstruction performance
- Possible automatic 3D reco

Conclusion

- The CYGNO collaboration is developing a high-precision triple-GEM TPC at atmospheric pressure with optical readout.
- The main focus is the **directional direct search** of DM WIMP-like particles in the low mass range (0.5-10 GeV).
 - Through nuclear recoil direction, solar neutrinos can be discriminated, and unambiguous confirmation of DM is possible.
 - Acceptable Solar neutrino (CNO cycle) for CYGNO_30 (S.Torelli thesis)
- LIME demonstrated the feasibility of such a detector for **rare event search**, validating our **MC chain**
- CYGNO04 will prove the scalability of our detector model for a larger project **R&D activities ongoing**

14/10/2024

It's a Dark Universe

Energy, Time, and other widely used methods are <u>not enough</u> to prove that an eventual signal is a Dark Matter signal

Capability to reject isotropy Dive into the Neutrino Fog

A. M. Green et. al, Astropart. Phys. 27 (2007) 142

WIMP signal (recoil map) Angular distribution of Fluorine recoils [5;50] keV

Directionality of the DM flux

Capability to identify Solar neutrinos

This is the only generic and unambiguous terrestrial signature of DM that results solely from the assumption that we live inside a DM halo.

The future of directional searches, Ciaran O'Hare

[2408.03760] Feasibility of a directional solar neutrino measurement with the CYGNO/INITIUM experiment (arxiv.org)

D. Fiorina - GSSI & INFN

24

14/10/2024

25

200

R&D activities

Hydrogen Rich Gas

• Add hydrogen-rich gas is under study to gain sensitivity to lower DM masses iC_4H_{10} and CH_4 with <10%

Low radioactivity Lens

 Building low radioactivity camera sensor and lens together with Hamamatsu/BMI experts

> i spest Presk Presk Presk

> > Feasibility study for low radioactivity lens

Enhanced Light Yield

[2406.05713] Enhancing the light yield of He:CF\$_4\$ based gaseous detector (arxiv.org)

G. Dho

Impact of a strong electric field below the GEM on light yield and saturation in a He:CF4 based Time Projection Chamber

Negative Ions SF₆

He:CF4:SF6 (59,39.4:1.6) Reduce diffusion during drift by adding SF_6 (thus negative ions) to the gas mixture.

 \rightarrow Operation at 900mbar!

14/10/2024