Towards MPGDs with embedded pixel ASICs

Lucian Scharenberg *on behalf of the CERN EP-DT-DD GDD team*

8th International Conference on Micro-Pattern Gaseous Detectors, USTC 14 October 2024

Motivation:

Why high-granularity readout of MPGDs? Why Timepix4?

1. Embedding into the amplification stage:

Simple PCB manufacturing techniques and intrinsic discharge protection.

2. First steps, triple-GEM:

Before embedding, explore GEMPix with Timepix4. Testing of TSV-Timepix4.

3. Large-area ASICs:

Long-term perspective and ideas for ambiguity-free readout

Summary

Motivation

Example applications:

High-granularity readout of gaseous detectors

Possibilities offered by high-granularity readout of gaseous detectors:

- → Low-material budget tracking with high spatial accuracy
- \rightarrow Event-selection based on geometrical signature

 \rightarrow X-ray polarimetry (e.g. IXPE @ NASA)

 \rightarrow Material science (e.g. MIXE @ PSI)

➔ Axion helioscopes (e.g. IAXO) ➔ Micro dosimetry (e.g. GEMPix)

→ Nuclear recoil events (e.g. MIGDAL, CYGNO)

 \rightarrow Sensitivity to low-energetic photon interactions (E_{gamma} < 2 keV)

Illustration for X-ray polarimetry @ IXPE

https://ixpe.msfc.nasa.gov/for_scientists/papers/ 2017spie_0829_sgro.pdf

Geometry selection with GridPix data

Hybrid pixel ASICs The Timepix4

Most commonly used ASIC for this purpose: **Timepix family**

➔ Use **bump-bond pads** for semiconductor sensor **as charge collection pads**

Timepix4: latest version of the Timepix

- ➔ 2.5 x 3.0 ≈ **7 cm²** active area with **448 x 512 pixels** (55 µm square pitch)
- ➔ **700 electrons energy resolution**
- ➔ Up to **60 ps front-end time resolution**
- → Up to 3 MHz/mm² hit rate (data-driven) and up to 5 GHz/mm² (frame-based)

Most interesting feature for us: 4-side tileable

- ➔ Connect from the back-side, using **Through Silicon Vias (TSVs)** with Redistribution Layer (RDL)
- ➔ No dead area, **no wire bonds!** Required for embedding process

Backside of a TSV-Timepix4

Courtesy of Jerome Alozy

Part 1: embedding concept and status

Embedding approach

New research line with CERN EP R&D Work Package 2

Embedding of front-end ASICs in flexible PCB, i.e. micro-pattern amplification structures

- ➔ Possible with **Micro-Resistive Well (µRWELL)** structure, **using standard PCB technologies**
- ➔ Conceptually inspired by **"MAPS foil"** (Magnus Mager and Rui de Oliveira): [MPGD 2022](https://indico.cern.ch/event/1219224/contributions/5129799/attachments/2566759/4425285/2022-12-14-MPGD-CMOS.pdf)

https://doi.org/10.1088/1748-0221/14/05/P05014 http://doi.org/10.1088/1748-0221/10/02/P02008

Embedding approach

New research line with CERN EP R&D Work Package 2

Embedding of front-end ASICs in flexible PCB, i.e. micro-pattern amplification structures

- ➔ Possible with **Micro-Resistive Well (µRWELL)** structure, **using standard PCB technologies**
- ➔ Conceptually inspired by **"MAPS foil"** (Magnus Mager and Rui de Oliveira): [MPGD 2022](https://indico.cern.ch/event/1219224/contributions/5129799/attachments/2566759/4425285/2022-12-14-MPGD-CMOS.pdf)
- ➔ Embedding **only possible, because of TSVs** (wire bonds and pads interfere laminating procedure)

Not drawn to scale!

Embedding approach

New research line with CERN EP R&D Work Package 2

Embedding of front-end ASICs in flexible PCB, i.e. micro-pattern amplification structures

- ➔ Possible with **Micro-Resistive Well (µRWELL)** structure, **using standard PCB technologies**
- ➔ Conceptually inspired by **"MAPS foil"** (Magnus Mager and Rui de Oliveira): [MPGD 2022](https://indico.cern.ch/event/1219224/contributions/5129799/attachments/2566759/4425285/2022-12-14-MPGD-CMOS.pdf)
- ➔ Embedding **only possible, because of TSVs** (wire bonds and pads interfere laminating procedure)

Signal induction simulation

How is the charge measurement affected?

- → Distance (up to 50 µm) between DLC and charge collection pads
- → Different geometry between Timepix4 pixels and µRWELL holes

Simulation of signal induction using **COMSOL** and **Garfield++** (Djunes Janssens)

Next step: include front-end response, i.e. Timepix4 transfer function

Next steps and production status

Designed and produced custom detector PCB (William Billereau)

- **→ Based on Nikhef carrier**
- **→ Support typical MPGD R&D detector housing**

Allows **µRWELL test without embedding** and various GEM configurations

- → Electrostatic coupling between µRWELL foil and TSV-Timepix4
- ➔ After low yield in first production, **new production ongoing**

Received electrically broken TSV-Timepix4v0

➔ At CERN MPT workshop for **mechanical tests of embedding**

Part 2: performance evaluation with GEM

Well-known technology (GEMPix) to understand gaseous detector properties and software optimisation

Triple-GEM detector for TSV-Timepix4v1 Detector design

Small gas volume with **3 mm drift/interaction region**, filled with **Ar/CO² (70/30)**

- **→ Triple-GEM** well established with Timepix (GEMPix)
- → **Reach sufficient gain while maintaining low discharge probability** (bare, unprotected Timepix)

Triple-GEM detector for TSV-Timepix4v1 Assembly of TSV chips

Chip assembly through **ACP** (Anisotropic Conductive Paste) on Nikhef carrier at University of Geneva (Mateus Vicente):

Triple-GEM detector for TSV-Timepix4v1 Detector assembly (GEMPix4)

Detector with $2.5 \times 3.0 \text{ cm}^2$ active area surprisingly complicated in handling and operation.

Triple-GEM detector for TSV-Timepix4v1

Single-channel characterisation

Single-channel copper electrode, read out with NIM electronics (preamp, shaper, MCA + picoammeter for anode current)

➔ **Gains > 25k** without discharges

➔ **Good energy resolution at low gains**

Individual interactions

3 mm drift is too thin for full absorption $\approx 10^2$ pixels per interaction

Measurements with ⁹⁰Sr at G ≈ 5000

First results

Imaging

First X-ray image recorded with TSV-Timepix4

Clusters

Hits only

Detector gain ≈ 5000

Next steps with GEMPix4

X-position / pixels [55 um]

Redo measurements with **Timepix4v2** (Fast-links work correctly) → 10 Gbps instead of 40 Mbps over slow control links

Flat-field corrected image and understanding of origin of image features

Explore the possibility of a **2 x 2 chip matrix and larger area** readout

Continue the work of Fabrizio Murtas with his colleagues from the **CERN RP Dosimetry team** (Pierre Carbonez, Tristan Genetay and Andrea Garcia-Tejedor)

- **→ Optimisation of the detector**
- \rightarrow Applications (e.g. micro dosimetry or part of CT in hospitals)

Part 3: future perspective and dreams Other front-end ASICs and readout boards in silicon

Large area coverage Typical gaseous detector applications

Pixel/pad readout = **ambiguity free**

Examples of pad readout:

-
- \rightarrow T2K Time Projection Chambers: 10 x 11 mm²
-
- \rightarrow MPGD-based DHCAL: 10 x 10 mm²
- \rightarrow Picosec MicroMegas: 10 x 10 mm²

Compare with typical pixel ASICS: 0.055×0.055 mm²

https://indico.cern.ch/event/973503/contributions/4099220/

 \rightarrow ALICE Time Projection Chamber: 4×7 mm², 6 x 10 mm², 6 x 12 mm² and 6 x 15 mm² \rightarrow RHUM project: 1×3 mm², 1 x 8 mm² and 10 x 10 mm²

Large area gaseous detector applications do not require this fine granularity

➔ Find a solution with e.g. **1 x 1 mm² or 3 x 3 mm² pads**

Other front-end ASICs

Establish a manufacturing technique that can be applied to other ASICs

- ➔ Use ASICs with larger pixel pitch, e.g. **ALTIROC** or **ETROC** (both 1.3 mm pitch)
- ➔ Could enable **high-granularity Picosec** MicroMegas/µRWELL with **integrated front-end electronics**

High-granularity Picosec MM (2 mm pads, discrete electronics) 1.3 mm pixel pitch ALTIROC

Courtesy of Florian Brunbauer

https://indico.cern.ch/event/1323113/contributions/5823798/

Dreaming a bit – the silicon readout board General idea

Go beyond the "classical" front-end ASIC

- \rightarrow Timepix4 and ALTIROC < 10 cm²
- \rightarrow Gaseous detectors > 100 cm²

Go beyond the "classical" PCB

- \rightarrow PCB with 30 x 30 pads of 3 x 3 mm² size very expensive ➔ (several kCHF)
- **→ Does not include front-end electronics** $(900 \text{ channels} = e.g. 8 \text{ VMM3a}$ hybrids = several kCHF on top)

Typical wafer costs (does not include the mask): 1 to 4 kCHF

➔ **Why not make a readout board from a wafer?** ➔ **The silicon readout board for gaseous detectors!**

https://indico.cern.ch/event/1413681/contributions/5998158/

Dreaming a bit – the silicon readout board Advantages

Why not make a readout board from a wafer? The silicon readout board for gaseous detectors!

Example: 100 x 100 mm² ASIC with 3×3 mm² pixels **→ Ambiguity free, large-area readout**

Cheap process possible (e.g. 130 nm instead of 28 nm)

With 3 x 3 mm² pads

- **→ Sufficient space for redundancy and discharge** ➔ protection
- \rightarrow Increase reliability of electronics

Summary and next steps

Summary and next steps

New research line on **embedding of high-granularity readout ASICs in micro-pattern amplification stage**

- ➔ Profit from the capabilities of **TSV-Timepix4**
- ➔ **First promising results obtained with GEMPix4**, allows to study signal induction and electronics ➔ understanding and optimisation

Next steps with Timepix4

- → Perform **tests with µRWELL**, first without embedding
- → Mechanical embedding tests at CERN MPT workshop
- **→ Target construction of multi-chip PCB** with e.g. 2 x 2 chip matrix

Future goals and dreams

- ➔ Test different front-end ASICs, e.g. **ALTIROC** or **ETROC**
- ➔ Start development of **silicon readout board**

Acknowledgements

This project is only possible, because of the help and support from many people. Many thanks to all of them!

CERN:

Jerome Alozy, William Billereau, Florian Brunbauer, Michael Campbell, Pierre Carbonez, Tristan Genetay, Djunes Janssens, Xavi Llopart, Magnus Mager, Rui de Oliveira, Eraldo Oliveri, Francisco Piernas Diaz, Miranda van Stenis

University of Geneva:

Mateus Vicente

Nikhef:

Martin Fransen, Kevin Heijhoff, Martin van Beuzekom, Bas van der Heijden

Thanks for your attention :-)

Lucian.Scharenberg@cern.ch

Back-up slides

First results Spectroscopy

X-ray **image has some structures**. Affects the quality of the ⁵⁵Fe spectrum.

Use the cluster information to **select the energy** and the plot the **hit positions** for each energy slice.

First results Spectroscopy

Use the cluster information to select the energy and the plot the hit positions for each energy slice.

First results Spectroscopy

Use the cluster information to select the energy and the plot the hit positions for each energy slice.

