

Progress of Experiments in China's Underground Laboratories

Yue Meng

Shanghai Jiao Tong University

2024/10/15

Outline

China Jinping Underground Laboratory

- PandaX-4T
- CDEX
- PandaX-III

Jiangmen Underground Laboratory

• JUNO

Summary and Outlooks

Jinping Underground Laboratory

• China Jinping Underground Laboratory (CJPL) is located in Sichuan Province, China

Jinping Underground Laboratory

- Ideal site for rare decay experiments
 - Deepest (6800 m.w.e)
 - Muon rate: ~ 1 count/week/m²
 - Horizontal access

2024/10/15

Jinping Underground Laboratory

Yue Meng, MPGD2024

Dark matter evidence and detection method

 Gravitational evidences suggest dark matter is the dominant form of matter in Universe!

Rotation curve of spiral galaxy M33

 $\chi + SM \rightarrow \chi' + SM'$

Direct detection Collider search

 $SMs \rightarrow \chi(s)+(SMs)$

 $\chi + \bar{\chi} \longrightarrow SMs$

The dark matter landscape

2024/10/15

Dark matter detection technologies

Dark matter detection technologies

PandaX-4T experiment

Yue Meng, MPGD2024

PandaX Roadmap

PANDAX Particle and Astrophysical Xenon Experiments

Dual Phase Liquid-Gas Xenon TPC

- Purity liquid xenon target, enhanced DM signals, achievable liquefication temperature, high light & charge yield
- Good ER/NR discrimination by S2/S1 ratio

• 3D reconstruction rejects external background

PandaX-4T Layout

PandaX-4T Detector

PandaX-4T WIMPs Searching

Luminance of Dark Matter

- Possible residual weak EM properties
- Coupling with photons

tree-level

- First experimental constraints on DM charge radius
 - 4 orders of magnitude smaller than neutrino
- Other EM properties
 - Up to 3 10 times improvement

X. Ning et al. Nature 618 (2023) 7963, 47-50

DEAP-3600

PandaX-4T Search for Neutrinos

 PandaX-4T measures solar ⁸B neutrino flux by CEvNS channel

• PandaX-4T measures pp neutrino by neutrino-electron elastic scatterings

 First ¹³⁶Xe 2vDBD half-life measurement with natural xenon detector

Future plan: PandaX-xT

- Next-generation liquid xenon experiment
 - with >30 tonne liquid xenon in the sensitive volume
 - decisive test on WIMP and key test on Dirac/Majorana neutrino

CDEX experiment

From Litao Yang, Tsinghua University

China Dark matter Experiment (CDEX)

 CDEX operates low energy threshold PPCGe to search for Light Dark Matter in CJPL

CDEX Roadmap

- **a**
- CDEX-1 (2009-2016): Development of PPC Ge detector, bkg understanding
- CDEX-10 (2016-2022): Performances of Ge array detector immersed in LN₂
- CDEX-50 (2021-202X): 50kg Ge detector arrays for DM searches
- CDEX-300v (2021-202X): 300kg enriched Ge detector arrays for 0vββ Exp.

Dark matter Searching

H.P. An et al

 10^{-31}

CDMSHVeV

Yue Meng, MPGD2024

New $0\nu\beta\beta$ result from CDEX

- Natural BEGe, 1.1kg, 186.4 kg·day exposure
- Establish data analysis procedure and PSD method, 50% reduction of background in ROI than CDEX-1
- First CDEX result from BEGe, $T_{1/2}^{0\nu} \ge 5.6 \times 10^{22}$ yr,90% C. L.

Enriched Ge material

- 200kg ⁷⁶Ge (>86%) arrived, half from Russia and half from China
- Whole technical chain established
- The mass production power (hundreds of kg per year) of enriched ⁷⁶Ge material has been setup in China

CDEX-50

- Ge detectors array directly immerse into LN, for cooling and shielding
- target mass (Ge) reaches ~50kg
- Bkg level: <0.01 cts/(keV·kg·day) @1 keV
- Energy threshold for data analysis: 160 eV
- WIMP SI sensitivity reaches **10**⁻⁴⁴ cm² \bullet

JCAP 07 (2024) 009

CDEX-300v Overview

- LN₂ tank shared with CDEX-50, in Hall C @ CJPL-II
- Reentrant tube containing LAr submerged in LN₂
- Ge detector array immersed in LAr (veto) tube
- Ge array divided into 19 strings (10-11 det/string, 200 det. in total ~225kg)
- An exposure for ⁷⁶Ge $0\nu\beta\beta$: >1t·y, $T_{1/2}$ > 10^{27} y

PandaX-III experiment

From Ke Han, Shanghai Jiao Tong University

PandaX-III experiment

PandaX-III: high pressure gas TPC for $0\nu\beta\beta$ of ¹³⁶Xe

- TPC: 100 kg scale high pressure TPC at 10 bar operating pressure
- Micromegas strip readout for millimeter level spatial resolution
- Good energy resolution and tracking capability for signal-background discrimination

Yue Meng, MPGD2024

PandaX-III Detector

Full vessel: low background

• Test setups, prototype, and full vessel at SJTU

PandaX-III Detector Commissioning

- Thermal bonding Micromegas from USTC were applied
- Best energy resolution at 6 keV (⁵⁵Fe) is 15% in 1 bar argon/CO₂
- Low background field cage with acrylic and kapton flexible PCB
- Convolutional Neural network (CNN) for track classification (Sci. China Phys. Mech. Astron. 61 (2018) 101007)
- Kalman filter based track reconstruction to improve $0\nu\beta\beta$ search sensitivity by 3 times to 2.7×10^{26} years (JHEP 06 (2021) 106)

Readout PCB

Thermal bonding MM

2024/10/15

Readout plane

Yue Meng, MPGD2024

Ultra-Low Background Charged Particle

• Combining gas TPC and thermal-bonding Micromegas.

- Particle track discrimination to reduce backgrounds.
- Large area, high detection efficiency, high sensitivity.
 - Time Projection Chamber (0.5-1.5 bar Argon/Xenon)
 - Readout plane: 2400 cm² (2×3 Micromegas)
 - Drift distance: 10 cm (Volume: 24 L)
 - Flexible PCB field cage
 - Samples are placed directly on the cathode to ensure complete deposition of alpha energy.
- Alpha background (Copper cathode + Gas): (0.14 ± 0.02)×10⁻⁶ Bq/cm²

Readout plane - Micromegas

Internal detector

Readout electronics

E-field distribution in the X-Y

plane

Yue Meng, MPGD2024

2024/10/15

Jiangmen Underground Neutrino Observatory (JUNO)

Yue Meng, MPGD2024

32

JUNO experiment

• JUNO is located in Guangdong Province, China

From Andrea Serafini and Benda Xu

JUNO Physics Prospects

• JUNO has a rich program in neutrino physics and astrophysics

• Neutrino mass ordering: 3σ (reactors only) @ ~6 years * 26.6 GW_{th} exposure

JUNO Physics Prospects

• Precision measurement of oscillation parameters

	Central Value	PDG2020	$100 \mathrm{days}$	6 years	20 years
$\Delta m_{31}^2 \; (\times 10^{-3} \; {\rm eV}^2)$	2.5283	$\pm 0.034~(1.3\%)$	$\pm 0.021 \ (0.8\%)$	$\pm 0.0047 \ (0.2\%)$	$\pm 0.0029 \ (0.1\%)$
$\Delta m_{21}^2 \; (\times 10^{-5} \; {\rm eV}^2)$	7.53	± 0.18 (2.4%)	± 0.074 (1.0%)	$\pm 0.024 \ (0.3\%)$	$\pm 0.017 \ (0.2\%)$
$\sin^2 \theta_{12}$	0.307	± 0.013 (4.2%)	± 0.0058 (1.9%)	$\pm 0.0016 \ (0.5\%)$	$\pm 0.0010~(0.3\%)$
$\sin^2 \theta_{13}$	0.0218	$\pm 0.0007~(3.2\%)$	± 0.010 (47.9%)	± 0.0026 (12.1%)	± 0.0016 (7.3%)

Solar neutrinos detection

 The largest ¹³C ES+NC+CC sample, ⁸B flux can be model-independently measured to 5% in

 JUNO will reduce the Borexino uncertainty on ⁷Be, pep, CNO flux measurement

JUNO Physics Prospects

• Supernova neutrinos

• Excellent capability for early warning with 3 detection channels

• Diffuse Supernova Neutrino Background, 3 σ in 3 years

• Atmospheric neutrinos

• JUNO will be the first to study atmospheric neutrino oscillation with liquid scintillator

Keys for the JUNO Detector

 Detection via inverse beta decay (IBD) event

- The optimal baseline for the detector
- Large statistics
 - 26.6 GW_{th} power
 - ~60 IBD events per day
- Energy resolution < 3%/VE @1 MeV

$$\frac{\sigma_{E_{\mathrm{vis}}}}{E_{\mathrm{vis}}} = \sqrt{\left(\frac{a}{\sqrt{E_{\mathrm{vis}}}}\right)^2 + b^2 + \left(\frac{c}{E_{\mathrm{vis}}}\right)^2}$$

- Energy scale uncertainty < 1%
 - Comprehensive calibration strategy
- Background control

Acrylic Sphere:

JUNO Detector Construction

^{2024/10/15} JUNO construction is nearing completion and will start the detector filling

Summary & Outlooks

 China's underground laboratories offer an extremely lowbackground environment, ideal for rare decay and high-precision fundamental physics research.

 Significant achievements have been made in dark matter and neutrino experiments, advancing our understanding of the universe's fundamental components and interactions.

• More experimental results are expected in the near future.

