

Development of the high-rate capable DLC-RPC based on the current evacuation pattern

Masato Takahashi¹

Sei Ban², Weiyuan Li², Atsuhiko Ochi¹, Wataru Ootani², Atsushi Oya², Hiromu Suzuki¹, Kensuke Yamamoto²

(¹Kobe University, ²The University of Tokyo)

14th – 18th October, 2024 The 8th International Conference on Micro Pattern Gaseous Detectors @ USTC in Hefei, China

Outline

➢ Introduction

- MEG II experiment
- DLC-RPC for background suppression in MEG II
- First prototype in 2022

➢ Improved DLC-RPC electrodes

Higher and uniform spacing pillars and current evacuation pattern

➢ Performance test

- Performance for β-ray
- Behavior in high-gain environment
- Long-term stability

➢ Summary & prospects

MEG II experiment

- Searches for $\mu^+ \rightarrow e^+ \gamma$ decay using the world's highest-intensity μ^+ beam
	- Charged lepton flavor violating process \rightarrow Evidence for new physics
	- The physics run period: from 2021 to 2026
- \triangleright Dominant background is an accidental coincidence of BG-e⁺ and BG- γ

Radiative Decay Counter (RDC)

- ➢ Detectors for tagging **BG-** from RMD
	- RMD e^+ is distributed on μ^+ beam line when BG- γ has signal-like energy
	- \rightarrow RDCs are installed on μ^+ beam line

Challenges for upstream RDC

➢ **Needs to detect low-energy RMD** ⁺ **in a high-intensity and**

${\bf low-momentum}\ {\boldsymbol \mu}^+$ beam

- Signal : e^+ with 1 – 5 MeV
- Background : μ^+ with 7×10^7 /s at 28 MeV/c

Requirements

-
-
-
- Detection efficiency \therefore > 90 % for MIP
- Timing resolution \therefore < 1 ns
-
- Material budget $: < 0.1\%$ of radiation length
- Rate capability : up to 3 MHz/cm²
- Radiation hardness : 20 weeks operation
	-
	-
- Detector size : 16 cm in diameter

Our solution: DLC-RPC

What is the DLC-RPC?

➢ **Resistive Plate Chamber with Diamond-Like Carbon electrodes**

New RPC idea by A. Ochi (2016)

Demonstration in 2020

\triangleright Demonstration using the actual μ^+ beam

- Atsuhiko Ochi reported at MPGD2022
- [K. Ieki, NIM A 1064 \(2024\) 169375](https://doi.org/10.1016/j.nima.2024.169375)

Need improvements

-
- Detection efficiency \rightarrow Multi-layering
-
- Rate capability \rightarrow Suppress performance reduction by a high particle rate
	-
- Detector scalability \rightarrow 2 cm \times 2 cm \rightarrow ϕ 16 cm

DLC-RPC design for MEG II

➢ **4-layer DLC-RPC**

 PI foil can be stacked up to 5 sheets due to the material budget

Gas gaps are supported by **spacing pillars**

 Spacing pillars are formed by photolithographic technology

➢ **Segmented HV supply for fast current evacuation and scalability**

- Also, HV is applied to each layer independently
	- Electrodes decoupled by PI substrate

Rate capability

➢ **Determined by the magnitude of the voltage drop** on resistance

- Large current on the resistive electrodes at a high rate
	- \rightarrow Voltage drop δV reduces effective applied HV $V_{\rm eff}$
	- \rightarrow Gas gain reduction

Prototype with current evacuation pattern

\triangleright For demonstration of 90 % efficiency in a 1 \times 10⁸ /s of μ^+ beam

- A. Ochi reported at MPGD2022
- The prototype had
	- \sim 10 M Ω /sq of surface resistivity
	- 1 cm pitch of conductive strips
	- \cdot ~ 160 µm thick spacing pillars
		- Facing these spacing pillars each other from both gas gaps, created a gap over 300 µm thick

CERN Micro-Pattern Technology Workshop deals with the material which can form uniform pillars \rightarrow Retry to validate the strip structure

Large variations: ∼ 20 µm thick

 \rightarrow Distorted the electric field

Improved DLC-RPC electrode

➢ Fabricated by CERN Micro-Pattern Technology Group

- Spacing pillar: ϕ 0.6 mm in diameter with 365 ± 5 um thick
- Surface resistivity of DLC: **6 – 15 MΩ/sq**
- Electrodes have a conductive strip
	- The protection cover is 0.2 mm 1.8 mm width

Diagonal view of spacing pillar

Test setup

Performance for β-ray

\triangleright Measured the performance for β -ray

- β-ray was irradiated locally and $O(1 \text{ kHz})$ by ϕ 2 mm collimator
	- ➔ Negligible impact from strip structure
- Environment: 24.0 ℃, 994.8 hPa, 55 %

Behavior at high-gain environment

\triangleright Measured HV current behavior at each voltage in 0(100 kHz) β-ray

Used the electrode with 0.2 mm width of protection cover and 13.8 M Ω /sq of resistivity → The margin of the cover and conductor is 50 µm

insufficient quench around the strip

Cover width dependence

➢ Comparison between 0.2 mm and 0.8 mm of cover width

0.2 mm width cover can meet the efficiency requirements considering the dead zone and voltage drop during short-term operation

Long-term stability

- ➢ DLC-RPC is required continuous operation for 20 weeks
- ➢ However, over time, instability in operation appears

Possible scenarios and measures

Ionic contaminations (resist residuals/fluorine deposition)

- They can become the path of the current \rightarrow They can be removed by cleaning
	- Fluorine deposition: [M. Takahashi NIM A 1066 \(2024\) 169509](https://www.sciencedirect.com/science/article/pii/S0168900224004352)
- Surface resistivity is too low
	- Creating sparks with enough energy to burn the polymer \rightarrow Try to adjust to a bit higher resistivity (~ 20 M Ω /sq)

The electric field is too strong

- Can cause an excessive gas avalanche or creeping discharge
	- \rightarrow Try to taller the spacing pillars (\sim 500 µm thick)
	- Technically feasible

Ionic contamination

➢ Damages are accumulated on the side of the spacing pillars

 Avalanche charges might burn the spacing pillar material \rightarrow To be investigated the robustness of material to sparks **October 15, 2024**
 Conference on Micro Pattern Gaseous Detectors
 17
 17

Summary

➢ DLC-RPC is under development for background suppression in MEG II

- Planned to be installed in a high-intensity and low-momentum μ^+ beam \rightarrow Required to have extremely low-mass budget and high-rate capability
- Consists of thin-film materials and low-resistivity electrodes
- First prototype in 2022 was prevented from stable operation
	- Non-uniform spacing pillars

➢ New DLC-RPC electrode with current evacuation pattern

- Fabricated by CERN MPT Workshop
- Prototype has \sim 365 µm thick of spacing pillars, and 6 10 M Ω /sq of surface resistivity

➢ Performance of new DLC-RPC electrode

- Detection efficiency for β-ray was reached \sim 60 %
- Discharge near the strip can be suppressed up to 2.66 kV
- Became unstable during long-term operation \rightarrow Under investigating cause and measures

Meets the requirement for single-layer efficiency

Prospects

➢ Need to investigate what makes the operation unstable

- Fabricate new electrodes with higher resistivity or higher spacing pillars
- Investigate the behavior by higher rate irradiation \rightarrow Distinguish between damages are accumulated or not
- \triangleright The next prototype design is ongoing
	- Demonstration of 90 % efficiency in $7 \times 10^7 \mu^+$ beam
		- With 4 -layer DLC-RPC, ϕ 16 cm active region, and segmented HV supply
	- Aim to complete the next prototype production by the end of March 2025

Aim to demonstrate the requirements for upstream RDC using the next prototype in 2025

Backup

MEG II experiment at PSI

\triangleright Search for μ^+ → e^+ γ decay with target sensitivity of 6 × 10⁻¹⁴

- Charged lepton flavor violation channels
	- Strongly suppressed down to $O(10^{-54})$ in SM + ν osc.
	- Predicted with $O(10^{-12} 10^{-14})$ in BSM, e.g. SUSY
- Using the world's highest intensity μ^+ beam at Paul Scherrer Institut (PSI)

R&D history

Conventional RPC and DLC-RPC

➢ Differences between conventional RPCs (glass RPC) and DLC-RPC (surface RPC)

Segmented HV supply for scalability

Performance at high rate

Detection efficiency:

- 45-50% at 1 MHz/cm²
- 20-40% at 3.5 MHz/cm²

Calculated voltage drop:

- 110-170 V at 1 MHz/cm²
- 210-310 V at 3.5 MHz/cm²

\rightarrow 1 MHz/cm² rate capability

Spacer formation

- Previous spacer material production cancellation
- \rightarrow New spacer material used
	- \cdot >300 µm-thick spacers cannot be formed
- Strategies for enough gap thickness
	- Form ~200 µm-thick spacers
	- Doubly accumulate spacers with precise alignment

300 µm gap thickness needed for enough efficiency

Discharge at strip structure

➢ Discharges likely occur near the strip structure

- Lower quench capability
- Electric field is distorted by protection cover

Discharge at strip

Pulse height spectra of each cover widths

Test using 0.8 mm width of cover

➢ Unstable at 2.67 kV (998.4 hPa)

Transition of the DLC-RPC electrode

