

The 8th International Conference on Micro-Pattern Gaseous Detectors

China spallation neutron source and neutron detectors

Zhijia Sun (sunzj@ihep.ac.cn)

China Spallation Neutron Source, IHEP, CAS
Oct. 16, 2024, HeFei

Contents

Outline

China spallation neutron source

II Status of the detectors development

III R&D for CSNS Phase II

IV Summary

Neutron source and synchrotron radiation light source: A multidisciplinary frontier research platform

A complementary research platform for studying the structure and dynamics of matter

Neutron: interact with nuclei X-ray: interact with extranuclear electrons

Spallation neutron source technology:

More complex technique, higher cost (compared to synchrotron radiation); low neutron intensity; difficult experiment; only 4 spallation neutron sources in the world (more than 60 synchrotron radiation light sources).

Widely-applied neutron technology

Neutron technology plays an irreplaceable and important role in research fields such as <u>new</u> materials, new energy, aerospace and industry

Fatigue & Residual stress of aircraft engine

Residual stress of high-speed train wheel

Chemistry

Detection of battery charge and discharge

Research on combustible ice

Single event effect on chip

Development trend of neutron sources in the World

- - Neutron sources are developing towards high-flux, pulsed neutron sources based on large accelerators:
 - Four Spallation neutron sources: ISIS, SNS, J-parc and CSNS.
 - ESS under the construction.

China Spallation Neutron Source (CSNS)

Legal Entity: Institute of High Energy Physics, Chinese Academy of Sciences. Co-construction Department: Guangdong Provincial Government, Construction Location: Dalang, Dongguan, Guangdong. Cost of CSNS-I: 1.86 Billion RMB and the budget for phase II: 2.89 Billion RMB.

BL1. Small Angle Neutron Scattering Instrument

BL2. Multi-functional Reflectometer

BL3. Liquid Neutron Reflectometer

BL4 Cold Neutron Direct Geometry Inelastic SpectrometerBL5. High-Energy Inelastic

Spectrometer

BL5. High-Energy Inelastic Spectrometer

BL6. Inverse Geometry Molecular Vibrational Spectrometer

BL7. (Reserved)

BL8A. Neutron Technology Development Beamline

BL8. Engineering Materials Neutron Diffractometer

BL9. High-Resolution Neutron Diffractometer BL10. Neutron Backscattering Spectrometer

BL10. Neutron Backscatte
BL10B. (Reserved)

BL11. Atmospheric Neutron Irradiation Spectrometer

BL12. Neutron Physics and Applications Spectrometer

BL13. Energy-Resolved Imaging Spectrometer BL14. Very Small Angle Neutron Scattering Instrument

BL15. High-Pressure Neutron Diffractometer

BL16. Multi-Physics Spectrometer

BL17. Elastic Neutron Scattering Spectrometer

BL18. General Purpose Powder Diffractometer

BL19. Single Crystal Neutron Diffractometer

BL20. Direct Geometry Polarized Inelastic Spectrometer

Bird's eye views of CSNS from 2011 to 2024

Operation Status

- Through continuous commissioning and optimization, the accelerator beam power is increased constantly
 - In Feb. 2020, the beam power reached the expected value of 100kW (1.5 years ahead of schedule)
 - In Mar. 2024, the beam power reached 160kW and the beam availability is higher than 97%.

User proposals

Demand on neutron scattering experiments grows fast

- Over 7,100 registered users, more than 1,700 proposals completed after 12 cycles of open operation.
- Pass rate of the proposals is ~30% due to limited beam time, less instruments and increased users

Distribution of CSNS users in China

CSNS global users

Britain: 11 Russia: 10 Germany: 8 America: : 2 Canada: 2 Switzerland: 1
Poland: 1 France: 1 Saudi Arabia: 1 France: 1 New Zealand: 1 Japan: 1

Sweden: 1 Singapore: 1

wZealand:1 Japan : 1

Multi-scale and multi-dimensional neutron characterization technologies

8 instruments completed, 3 instruments under commissioning, 11 instruments and terminals planned in CSNS II

Microstructure characterization

- Powder Diffraction (Crystal Structure)
- Monocrystalline Diffraction (Single Crystal Structure)
- Small Angle Scattering (Nanostructure)
- Reflection (Interface Structure)

■ Dynamics Characterization

- Time-of-Flight Spectrometer (Lattice Vibrations)
- Inverse Geometry Inelastic Scattering (Vibrational Spectra)
- Backscattering (Diffusion Relaxation)

■ Non-destructive detection of residual stress

- Powder Diffraction
- Bragg-edge imaging

☐ Non-destructive microscopic detection

Neutron imaging

Measurement of trace element

Neutron activation

□ Radiation effect

- neutron radiation
- proton radiation
- gamma radiation

In-situ sample environment:

Temperature range: ~mK to +1600°C

Magnetic field: 14 T Pressure: 30 GPa Tensile force: 100 kN

Dimensions: 2 tons, 2 meters Electric field, gas filling, etc.

Single-Event Effect (SEE) in Integrated Circuit Chips

- CHINESE ACADE MY OF SCIENCES
- ANIS was to provide an advanced atmospheric neutron acceleration test and scientific research platform for communication, aerospace, nuclear power, medical treatment, transportation, high-performance computers and other fields.
 - On June 2022, ANIS passed the acceptance. The energy spectrum is very closer to that of the actual atmospheric environment.

Research on the wheel of high-speed train

This preliminary research on residual stress in wheels used for 350 km/h high-speed trains obtained stress data of the wheels, which is the first time in China. Experimental research on the performances of wheels before and after use was conducted at the engineering material Diffractometer, helping to improve the processing technology and lifetime of wheels. At present, we plan to advance the research on 400 km/h high-speed wheels.

Academician Wang Haizhou's group (Central Iron & Steel Research Institute)

New energy materials

>

Structural characterization on new energy storage materials such as lithium batteries, sodium batteries, hydrogen storage, and organic solar cells.

■ Using neutron diffraction technology, Ma Cheng et al from USTC determined the lithium distribution

of Li₂ZrCl₆, which is

overcoming the cost bottleneck of solid-state electrolytes;

2) advancing the commercialization of all-solid-state batteries;

3) good for environmental protection (Nat. Comm. 2021, 12, 4410)

Other progresses

University/Institute	Researcher	Progress
BUAA	Shui Jianglan. et al	Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature (Nature Nanotechnology 2021, 16, 331)
PKU-SZI	Xiao Yinguo	Unveiling the migration behavior of lithium ions in NCM/Graphite full cell via in operando neutron diffraction (Energy Storage Materials, 2022, 44)
IOP	Gu Lin	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries (Nat. Sustainability, 2021, 5, 214)
SCNU	Liu Shengjian & Li Qingduan	Superior layer-by-layer deposition realizing P-i-N all-polymer solar cells with efficiency over 16% and fill factor over 77% (J. Mater. Chem. A 2022, 10, 10880)
CUP & NEPU	Hu Qinhong & Sun Mengdi	Research on shale oil and gas (China Energies 2022, 15, 913; Scientific Reports, 2021, 11, 1)

CSNS phase II

On Mar. 30, 2024, **CSNS II project construction began**, with a construction period of 5 years and 9 months. After completion, the research capabilities of the facility will be significantly enhanced and basically cover all application fields of neutron scattering. The experimental precision and efficiency will be improved, providing a more solid foundation for exploring scientific frontiers, and resolving key issues in industrial development.

What to construct:

- Improving the accelerator power to 500kW
- 9 neutron instruments and 2 experimental terminals
- The first muon experimental terminal in China
- High-energy proton experimental terminal in China

Future plan

- Spallation Neutron Source and the Synchrotron Radiation Light Source complement each other, forming complementary research methods
 - Constantly improve the performance of CSNS
 - Construct Southern Advanced Photon Source (SAPS)

Contents

Outline

I China spallation neutron source

II Status of the detectors development

R&D for CSNS Phase II

IV Summary

The detector and electronics team

Team Mission:

- Focusing on the requirements of the CSNS neutron Instruments
- Developing advanced neutron detection system

Team composition:

- Professors: 3, Senior Researchers: 11
- Total Number of Members: 50+
- Expertise: Detection Physics, Electronics, Data Acquisition, Mechanics, and Engineering Processes
- Average Age: ~36 years old

Roadmap

Develop detectors "family" for neutron instruments at CSNS

Detector requirements for instruments at CSNS

- The present engineering approach is based on the technology developed over the past 5-10 years.
- The ongoing research aims to provide the solution for the neutron instruments in the future.

Large-Area ³He Tube Array Detector - Standardization Schemes Acade MY OF SCIENCES

- A continuously optimized and Standardized Engineering Design
 - Three technical solutions for atmosphere, high vacuum and low vacuum
 - Solve vacuum discharge, electronics cooling, space limitation, system noise and channel consistency.

Standardized Engineering Design

HV Discharge in vacuum

Continuously upgrade solutions

- Module design with 8 or 16 tubes
- Key component from multiple supply, avoiding single source dependency.
- FEE close to detector to reduce noise
- Optical fiber connections between devices to prevent electromagnetic interference.
- Improve stability and real-time monitoring

Large-Area ³He Tube Array Detector Readout Electronics ACADE MY OF SCIENCES

Based on customized high-density pre-amplifier ASIC, with induvial DAC for threshold tuning

Pre-Amplifier Board x 2

- 8 channels
- CSA + CRRC + Single-ended to differential
- Shaping time: ~ 2 us
- High-Voltage distribution
- Power consumption: ~ 4 Watt

Digitization Board

- 16 input channels
- FPGA: Virtex5-LX85T
- Waveform sampling of 65 Msps
 @ 14bit
- Peak finding and hit-position calculation by charge division method
- Optical SiTCP for DAQ
- Power consumption: ~ 5 Watt
- T0/ID receiver for timing and tagging

Specs	Requirement	Results
Dynamic Range	100 - 800 fC	100 - 830 fC
Charge Resolution	< 15 fC	< 5 fC
INL	< 1%	< 0.5%
Counting Rate (Channel, peak)	> 100KHz	> 100KHz
Timing Resolution	< 1us	< 20 ns
Position Resolution	< 10 mm with 1m tube	< 8 mm
		21

Large-Area ³He Tube Array Detector - Atmospheres ACADE MY DE SCIENCES

Multi-Physics Instrument (MPI) detector system

RDTM 2021, 5: 200-206. Nuclear Science and Techniques, 2022, accepted

- Large-area coverage: 6.6m² (544 1-inch diameter ³He tube)
- Start operation in July 2021 and run stably for 3 years

Detector system design

M.C. simulation

Technical review

Beam test

Key technology

Mass production

Assembly & testing

System calibration

On-site installation

Sample experiment

2020.11.09 多物理谱仪探测器单元模块和支撑架出厂验收 起源上排。房籍字、傳發馬、罗 两、周健梁、康 乐、庄 建、李治多、夏远光、载施东 起第一排。吳伯莲、梅岡燕、刘绍宽、肖昌祥

Large-Area ³He Tube Array Detector - High Density

→ High Pressure Neutron Diffractometer (HPND) & High Resolution Diffractometer(HRD)

HPND: 928 8mm/half-inch ³He tube, one module with 16 tubes, finished in next 3 months.

Engineering Design of HPND

Detector Module Design

Installation & commissioning

HRD: 1376 8mm/half-inch ³He tube, one module with 16 tubes, finished in next 3 months.

Engineering Design of HRD

Detector Module Design

Installation & commissioning

Large-Area ³He Tube Array Detector - Low Vacuum

Nuclear Science and Techniques, 2022, 33: 89

- Small-Angle Neutron Scattering (SANS) detector system
- 120 8mm diameter ³He tubes, small space, low vacuum environment (10Pa), movable base.
- All-metal connections and low-temperature welding. Operating stably for 6 years.

Detector system design

Low temperature and high precision welding on ³He tube

All metal pipeline connection

Readout Electronics

Beam test

Nature News @2017.11.1

Sample experiment

Large-Area ³He Tube Array Detector - Low Vacuum

- Very Small Angle Neutron Scattering (VSANS) detector system
 - 512 8mm diameter ³He tubes, low vacuum environment (10Pa), movable base.
 - One module with 16 tubes. Operating stably for 1 year.

Module design

key technology

Batch manufacturing

Assembly and testing

Beam test

Calibration

On-site installation

Large-Area ³He Tube Array Detector - High Vacuum (SNS)

- High energy Direct geometry inelastic neutron scattering instrument
 - 264 1-inch, 3 meters long ³He tube, high vacuum environment (10⁻⁴Pa).
 - The detector installation has been completed and commissioning is underway.

Detector system design

M.C. simulation

Prototype development

key technology research

Mass production

Assembly and testing

Position Calibration

Large-Area Scintillator Detector

Module design: front-end digital for fast readout, highly integration and easy assembly

2010~2018

First-generation

- 0-> 1 Breakthrough
- laboratory-level to engineering-level products

• Engineering application: GPPD spectrometer 6m² space coverage

2018~2023

Second -generation

- Performance further improved
- implementation of batch production

2023~2029

Third -generation

More compact

- High integration, low power consumption
- Engineering application: EMD, ERNI and other spectrometers 8m² area coverage

- High spatial resolution: <1mm
- Can work in vacuum environment
- Domestic Key Components
- Engineering application: CSNS II

Large-Area Scintillator Detector – 1st generation

- > Flat Panel Scintillation Neutron Detector for GPPD
 - Detection area 6m², ⁶LiF/ZnS(Ag)+WLSF+MA-PMT
 - Start operation from August 2018 and run stably for 6 years.

Detector module design

Detector array design

Sample experiments

Bank1 and Bank2

Bank3 and Bank4

Large-Area Scintillator Detector – 2nd generation

Oblique Incidence Scintillation Detector Based on SiPM

 Including scintillator, WLSF, electronics, SoC, power supply, temperature monitoring, temperature compensation modules.

 $n + {}^{6}Li \rightarrow \alpha(2.05 MeV) + {}^{3}H(2.72 MeV)$

Detector module design

Solve problems of SIPM for large -scale engineering application

SiPM gain and gain uniformity comparison test

Thermal noise and I/V curve change before and after thermal neutron radiation

Large-Area Scintillator Detector Readout Electronics

Based on customized high-density pre-amplifier ASIC, with induvial DAC for threshold tuning

Large-Area Scintillator Detector - Mass Production CHINESE ACADE MY OF SCIENCES

Mass production based on assembly line to reduce the impact of human factors in the process, improve the uniformity of the detector and control the quality

Large-Area Scintillator Detector

Applicated to Engineering Material Diffractometer (EMD) (100 units)

Batch calibration and optimization of the detector with neutron beam

Beam Test

Uniformity of detection efficiency is better than 95%

Characteristic diffraction peak of standard sample

Start operation in the coming cycle

Large-Area Scintillator Detector

- Applicated to Energy-Resolved Neutron Imaging instrument (ERNI) (400 units)
 - Detection area: ~ 3m², 25,000 channels of electronics, solved the problem of power consumption and heat dissipation. Operating stably for 1 year.

on-site installation and commissioning

Ceramic GEM Neutron Detector

In 2013 the ceramic GEM was invented to reduce hydrogen containing materials with low neutron scattering, high radiation resistance and high temperature resistance

Aiming at engineering applications, ceramic GEM based detector design and key technology development

Detector design

Ceramic GEM development

Large-area boron coating by magnetron sputtering

CPC, 40(7):076002,2016

Rev. Sci. Instrum. 94, 093901, 2023

R&D of multi-channel ASIC chip

Fast digital readout electronics

Ceramic GEM - Beam Monitor

High flux 2D position sensitive neutron beam monitor

6 monitors were installed in CSNS I, operating stably for 6 years. 21 monitors totally used for instruments

Monitor design parameters

Indicators	Specifications	
Conversion layer	B ₄ C、C ₂ H ₄ , U	
Effective area	50mm*50mm, 100mm*100mm, 200mm*200mm	
Detection Efficiency @1.8Å	10-4~10-2	
Counting rate	1 MHz	
Neutron flux	10 ¹⁰ n/s	

30 monitors have been mass-produced

Monitor Operation Test Results

Ceramic GEM - Imaging Detector

Al/Ti film is used as a stop layer. Spatial resolution is improved to 0.8mm, and it has been installed at **ERNI** for bragg-edge imaging experiment.

M.C. simulation 10B₄C converter Relative intensity (a.u.) ▼ 2.5 µm Ti: 0.89 mm, IEEE TNS, 2021,99:1 x (mm)

Test results of neutron beam test

Detector design

Detector photo

Neutron wavelength

Detecting surface uniformity

Bragg-Edge Neutron Imaging

3 µm Ti

Ceramic GEM - High Resolution Detector

Multi-layer BGEM structure is used to improve the detection efficiency, and it has been installed at VSANS for very small angle neutron scattering experiment.

Detector design

Detector prototype development

Project Acceptance by CAS@2019

Detector photo

Neutron beam test

2D beam profile

Neutron wavelength

Spatial resolution

Ceramic GEM - Fast Neutron Detector

Atmospheric Neutron Irradiation Spectrometer 2D position sensitive detector

Use aluminum as stop layer and spatial resolution of fast neutron improved from 5mm to 2.1mm, has been installed at ANIS for fast and thermal neutron beam monitoring

Specifications

Spatial resolution 4.3 mm (FWHM)

Spatial resolution 2.1 mm (FWHM)

Ceramic GEM – Frontier Exploration

Sealed GEM neutron detector.

NIMA, 2021,995:165129

- Developed high-temperature resistant (100°C) ceramic GEM to meet baking outgassing.
- Enhancing detector stability, suitable for vacuum environments, future direction.

Detector design

Indicators	Specifications
Conversion layer	1µm B4C
Effective area	100mm*100mm
Pixel size	1.56mm
Detection Efficiency@1.8Å	~ 3%
Counting rate	1 MHz

Detector assembly

Detector baking outgassing system

2D imaging

Spatial distortion

Detection efficiency

Neutron wavelength

Long-term stability

Neutron Imaging Detector

Aiming at the neutron imaging demands of CSNS and international frontiers, developing a variety of high spatial resolution and high timing resolution imaging detectors

Compact imaging detector

Latest beam test results: 122 µm@4.1LP/mm

NET, 2021, 53(6):1942-1946

High-resolution imaging detector

Micrometer ultra-high resolution neutron imaging detector with ultra-thin GOS: Tb transparent ceramic scintillator

Latest beam test results: 6.6 μm @ 74 LP/mm

Optical Materials, 2020, 105: 10990 (cooperated with the Lijiang team of the Shanghai Institute of Ceramics)

Energy resolution neutron imaging detector

Energy resolution neutron imaging detectors can achieve high time resolution and high spatial resolution at the same time.

Latest beam test results: 20 μ m (25 LP/mm), $\Delta\lambda/\lambda$ = 0.3%

NIMA, 2021, 1003: 165322

Neutron Imaging Detector - Large FOV

ERNI—Large FOV Imaging detector. Operating stably for 1 year.

Detector engineering design

Lens	Magnification	FOV	Distance	Spatial resolution
Nikon				
AFSVRMICR O60_2.8	0.15	200mmX200mm	484mm	200μm
	0.3	100mmX100mm	242mm	100µm
Nikon AFSVRMICR O105_2.8	0.3	100mmX100mm	500mm	100µm
	0.5	60mmX60mm	423mm	60µm
	1	30mmX30mm	343mm	30µm

Large FOV Imaging detector

Neutron beam test @ ERNI

The maximum FOV is 220mm*210mm, and the best spatial resolution is 25 µm measured at ENRI

Neutron Imaging Detector-Energy Resolution (TOF)

Solution Energy resolved imaging detector. Operating stably for 1 year.

Detector engineering design

Energy resolved neutron imaging detector

Lens	Magnification	FOV	Distance	Spatial resolution
Nikon AFSVRMIC RO60_2.8	0.12	100mmX100mm	622mm	458µm
	0.14	90mmX90mm	507mm	393µm
	0.3	42mmX42mm	302mm	183µm
Nikon AFSVRMIC RO105_2.8	0.3	42mmX42mm	519mm	183µm
	0.5	25mmX25mm	399mm	110µm
	1	12.7mmX12.7mm	299mm	55μm

Test and commissioning at the ERNI

Preliminary test results of ENRI

High Speed Readout Electronics for Neutron Imaging SNS

Joined the Medipix4 international collaboration group

- Medipix International Collaboration Group
 - Led by CERN, established for over 20 years, CSNS officially joined in 2022.
 - Dedicated to the R&D and promotion of pixel detector chips.
 - Latest pixel detector chip Timepix4
 - Pixel Size/Time Resolution: 55um/200 ps
 - Maximum Count Rate: 3.5M hit/mm²/s
 - Utilizes TSV (Through Silicon Via) technology to minimize dead zone.

Conducting key technology research for high-performance energy-resolved neutron imaging detector based on Timepix4 detector modules.

Long term goal: Large area high speed neutron camera

- High-efficiency, highresolution scintillation screens.
- Large FOV
- High time resolution: < 1ns
- High spatial resolution:
 50 um (CoM algorithm)

Readout based on single-chip module

ZU + Readout Platform

High-speed readout and data compression research based on the latest SOC platform

Neutron Imaging High Speed Camera Development ACABE MY DE SCIENCE

			Timepix3 (2013)	Timepix4 (2019/20)		
Technology			IBM 130 nm – 8 metal	TSMC 65 nm - 10 metal		
Pixel size			55 x 55 μm	55 x 55 μm		
Pixel arrangement		ent	3-side buttable 256 x 256	4-side buttable (TSV) 512 x 448	3.5	
Sens	sitive area 1.98 cm ² 6.94 cm ²		6.94 cm ²	J 5.5		
	_ /	Mode	ToT and TOA			
Readout modes	Data driven (tracking)	Event packet	48-bit	64-bit		
		Max rate	< 43 Mhits/cm ² /s	357.6 Mhits/cm ² /s	18 x ■	
		Pix rate equiv.	1.3 kHz/pix average	10.8 kHz/pix average	J°^	
	Frame	Mode	Count: 10 bit + iToT	Count: 8 or 16 bit CRW		
ad		Frame	Zero suppressed (with pix addr)	Full frame (no pix addr)		
å	Based	Max count rate	82 Ghits/cm ² /s	~ 800 Ghits/cm ² /s	10:	
(ima	(imaging)	Max frame rate	N/A (worst case: 0.8ms readout)	80 kHz CRW	J '* '	
тот	energy resolution < 2 keV < 1 keV		< 1 keV) 2 x		
Time	e resolution 1.56 ns ~ 200 ps) 8 x			
Readout bandwidth		ridth	≤ 5.12 Gbps (8 x 640 Mbps)	≤163.8 Gbps (16 x 10.2 Gbps)	32	
Target minimum threshold		n threshold	< 500 e ⁻	< 500 e ⁻		

Timepix4

Zynq Ultrascal+ Timepix4 Readout Demonstrator

Scintillation screen Optical Silicon Pixel Sensor + Timepix4 based neutron imaging being developed at CSNS

- Two prototypes: CTPX1, CTPX4
- Key Specifications
 - Sensor: Si
 - Pixel Array: 512 x 448 (CTPX1), 1792 x 512 (CTPX4)
 - Pixel Size: 55 um x 55 um
 - Maximum rate: 89 kfps (frame mode),
 3.56 x 10⁶/mm²/s
 - Real time buffering: 32 GB/Timepix4
 - Readout interface: 40GbE
- · Timeline for commissioning
 - CTPX1: 2024Q1CTPX4: 2024H2

Neutron Imaging High Speed Camera Development ACADE MY OF SCIENCES

Neutron Imaging Detector-Energy Resolution (TOF) SCHENCES

- Development of neutron sensitive Micro Channel Plate (nMCP)
 - Challenges: Low γ sensitivity and high boron-doped concentration in nMCP, reducing high Z materials.
 - Achieved 20 mole% boron-doped nMCP, successfully applied in GPPD

Neutron Imaging Detector-Applications

Successfully carried out several applications in multi fields at CSNS

Bragg Edge Neutron Imaging Experiment (Chen Jie)

Energy Selective Neutron Imaging

Polarized Neutron Imaging (Wang Tianhao)

Polycapillary (Yi Tiancheng)

Contents

Outline

I China spallation neutron source

II Status of the detectors development

III R&D for CSNS Phase II

IV Summary

Future development for neutron instruments

>Addressing Engineering Issues of Neutron Instruments:

- >Enter "Vacuum"
 - Solve challenges like vacuum discharge, electronics cooling, space limitation, system noise, and channel consistency
- ➤ Moving towards High Bandwidth + Large Scale:
 High count rate, high dynamic range, distributed independent modules
- > Enhancing Performance of Neutron Instruments:
 - ➤ Moving towards "Quasi" Real-Time

 Distributed information flow, data-driven, front-end physics analysis in real-time
 - ➤ Moving towards High Resolution (Spatial, Temporal): Wavelength resolution, spatial resolution.

³He based GEM neutron detector

- Develop high count rate, high efficiency GEM detector to meet the requirements of liquid reflection instrument
- Bottleneck: traditional detector based on wire chamber can't meet the high flux measurement
- 3He + GEM may potentially achieve high efficiency and enhance high count rate by two orders of magnitude

Parameter	³ He MWPC	³ He GEM needed
Effective Area	200mm × 200mm	600mm × 1000mm
Spatial resolution	≤ 2mm (FWHM)	≤ 2mm (FWHM)
Detect efficiency	≥ 80% @ 1.8Å	≥ 80% @ 1.8Å
Counting rate	≤ 100kHz	≥ 1MHz
n/γ discrimination	10-7	10 ⁻⁷

GEM counting rate 10 MHz

³HE gas advantage

GEM neutron detector with ³He

Laser drilling for ceramic GEM

Detector high-pressure chamber design

Large-Area Scintillator Detector – 3rd generation

High-Resolution Scintillation Detector

Aiming at the urgent needs of high -performance neutron detector for CSNS II

Detector module design

Neutron imaging detector with ultra high spatial resolution

Microsecond-level time resolution, and micron & even sub-micron level spatial resolution

- Researching neutron image intensifiers, integrating neutron conversion and intensifier into a single vacuum device to improve integration.
- Developing ultra-thin transparent ceramic scintillators and TimePix4 cameras (already authorized by CERN).

Neutron image intensifier

Ultra-thin transparent ceramic scintillator

Readout Electronics – ³He PSD Tube Array Detectorys

Key Specifications

- Readout Method: Waveform sampling
- Ultra low power FPGA + ADC
- Customized ASIC (GF 180nm process)
- Modular design: 8 tube / set
- Remote firmware update
- Low power (< 3W/8 tube readout) for vacuum operation without climate chamber

Vacuum Test Setup

	Voltage	Current	Power (W)
Front-end Board	3.5V/-3.5V	0.075A/0.015A	0.315
Digital Board	3.5V/-3.5V	0.668A/0.001A	2.342
Subtotal			2.972

< 8 mm position resolution achieved

- Hottest component (ADC) stabilized
 @ ~ 35 °C in vacuum
- Use TOF gating further reduce dynamic power consumption

Data-driven System for Neutron Instruments (DSNI) LES ACABEMY DE SCIENCES

Southern Advanced Photon Source (SAPS) Testing Platform CHINESE ACABE MY DE SCIENCES

Nanofabrication Lab for Detector Development

□ Research feilds:

Multi-threshold photon counting pixel array detector

Beam position stabilization system based on diamond detectors

Ultra-high energy resolution detector based on TES

□ Supporting Conditions:

Laser Direct Writing Lithography Machine

Magnetron Sputtering Coating machine

Reactive Ion Etching Machine

Wire bonding

Probe Station & Semiconductor Analyzer

Microscope

Micro-Nano Fabrication: Packaging In

- Minimum critical dimension: 300nm
- Overlay alignment accuracy: 500nm
- Maximum substrate size: 6 inch

Packaging Integration:

- Maximum wire length: 8mm
- Bonding accuracy: 3µm
- Bonding Wire Range: 56mm*90mm

Testing and Calibration:

- I-V、C-V Curve, Voltage range: -210V~210V
- High-Bandwidth Oscilloscope, Bandwidth: 36GHz

Summary

- Tightly around the requirements of neutron instruments, establish a neutron detectors family, promote engineering construction and exploration of new technologies.
- Based on engineering and R&D requirements, establish various functional testing and development platforms.
- Set up a micro-nano structure detector R&D platform.
- In the future, will focus on the demands of major scientific projects:
 - Solve engineering challenge, conducting engineering technical R&D (vacuum, magnetic field, electromagnetic interference, background suppression).
 - Exploring new technologies to enhance the performance of instruments

Acknowledge

中华人民共和国科学技术部

Ministry of Science and Technology of the People's Republic of China

