

New Mission Concept (MeGaT): a high precise MeV Gamma Telescope using TPC Technique read out with Micromegas

Libo Wu On behalf of the MeGaT Group

MeGaT Group members

YiFu Cai^{1, 2}, Changqing Feng^{1, 2}, Jingnan Guo², Leipeng Hu², Kun Jiang¹,
Xiaoshen Kang⁴, Jian Li^{1, 2}, Nenghui Liao⁸, Xinpeng Li², Bing Liu², Cong Liu², Jianbei Liu^{1, 2}, Ruoyu Liu⁵, Shubin Liu^{1, 2}, Chenye Shen², Shaobo Wang³, Xuan Wang⁴, Yu Wang², Libo Wu¹, Hubing Xiao⁷, Lailin Xu^{1, 2}, Rui Xue⁹, Ruizhi Yang^{1, 2}, Zhengguang Yang², Qiang Yuan⁶, Yunlong Zhang², Zhiyong Zhang^{1, 2}, Maoyuan Zhao², Zhengguo Zhao^{1, 2}, Rui Zhou², Yong Zhou², Zheyan Zhou², Hao Zhuang²

Outline

\Box Introduction on MeV γ -ray astronomy

□MeV γ-ray detection

- Key technological challenges
- Some experimental proposals

□MeGaT experiment and R&D process

- Conceptual design
- Simulation framework and results
- Prototype of R&D
- Electronics

□Summary

Outline

\Box Introduction on MeV γ -ray astronomy

ΔMeV γ-ray detection

- Key technological challenges
- Some experimental proposals

■MeGaT experiment and R&D process

- Conceptual design
- Simulation framework and results
- Prototype of R&D
- Electronics

□Summary

MeV γ-ray astronomy observations

There is great discovery potential for the MeV gap

MeV γ-ray astronomy

□Studying the origin, composition, and evolution of the universe, and other related phenomena.

- MeV spectral line astronomy
- Ultra-high-energy neutrinos and cosmic rays
- MeV bremsstrahlung
- Sub-GeV dark matter and primordial black holes

A brand-new astronomical observation window for MeV γ rays

Outline

\Box Introduction on MeV γ -ray astronomy

□MeV γ-ray detection

- Key technological challenges
- Some experimental proposals

■MeGaT experiment and R&D process

- Conceptual design
- Simulation framework and results
- Prototype of R&D
- Electronics

□Summary

Key technological challenges

The energy is too high to be collimated
 It is difficult to measure 3D trajectories of electrons, that produced in Compton scattering and pair conversion according to Coulomb multi-

scattering.

Astroparticle Physics 97 (2018) 10-18

It is practical to improve the e-tracking measurement by reducing the material density with gas detectors

Some experimental proposals

SMILES (0.3-3MeV) TPC Compton camera

The Astrophysical Journal, 930:6 (13pp), 2022 May 1

RM SPD event circle Getron tracker (Ar 2 atm) Position-sensitive scintillation cameras

e-ASTROGAM (0.3MeV-3GeV) Silicon gamma telescope

Journal of High Energy Astrophysics 19 (2018) 1-106

HARPO (MeV-GeV)

TPC Gamma polarization measurement

Advantages of 3D e-tracking with TPC

- Providing Scattering plane limits to reduce background
- Achieving optimal angular resolution by minimizing electron scattering
- Electron emission angles carrying polarization information

Outline

\Box Introduction on MeV γ -ray astronomy

- **Δ**MeV γ-ray detection
 - Key technological challenges
 - Some experimental proposals

□MeGaT experiment and R&D process

- Conceptual design
- Simulation framework and results
- Prototype of R&D
- Electronics

□Summary

Conceptual design

□TPC based technique

- ≻30 cm cubic volume (small prototype)
- ➢Four 50 cm³ unit or a single 100 ×100 ×50 cm³ volume (satellite)
- ≻3 -10 bar high pressure
- □Expected performance
 - ≻High dynamic range:
 - 0.3 MeV -100 MeV
 - ≻Angle resolution (PSF):
 - 2 ° @MeV, 0.5 ° @100 MeV

Software framework

Goal: single software for simulation, reconstruction & analysis

Software stacks:

- Simulation:
 - k4SimGeant4
- Event data model:
 - EDM4hep
- Event-processing:
 - Gaudi
 - k4FWCore

Geant4 Running Engine

option 1: Gaudi-integrated

- Single-threaded
- No MC truth

option 2: Standalone process

- *ddg4* (dd4hep-native)
- Multi-threaded support
- MC truth support

Sensitive Detector

Calorimeter crystal:

• multi-steps per Hit

TPC gas:

• one-step per Hit

Readout segmentation

Calorimeter:

• Pixel

TPC:

- Strip/Pixel
- Extra stage needed in digitization
- Surface attached to PCB
 - Drift distance determination
 - Coordinate transformation

Simulation performance

 Track reconstruction of recoil electron by Kalman Filter Algorithm

Poster by R.Zhou

Simulation performance

Four identical 50cm cubic detection vessels

Very preliminary simulation result without pair production
 Rough estimation by taking into account pair production

Perfect performance on spatial and energy resolution are required for the TPC and calorimeter **Poster by R.Zhou**

Prototype of R&D

• 30 cm cubic volume

Technical challenges

- High voltage: Micromegas $\sim 3000 \text{ V}$, Field cage $\sim 15000 \text{ V}$
- High-pressure sealing: 5 bar
- Mechanical support and heat dissipation issues

Prototype of R&D

Schematic design for system

□ Multiple detector system

- High dynamic range, low noise FEEs
- T0 from cathode signal of CZT
- Multiplexing readout to minimize the channel number
- Modular design for extensibility

FEE of the TPC

Digital output ASIC (design by Professor L. Zhao)

- Switched Capacitor Array (SCA) & Wilkinson ADC
- The development and performance of the front-end readout board has been completed

Dynamic range	48 fC-1 pC
INL	< 1%
Shaping Time	70ns-1us
Maximum sample rate	160 MSPS
Sample units	128 cells
Noise (RMS)	< 0.5 fC @ 48fC
Timing resolution(RMS)	< 1 ns @ 48fC
Dead time	< 75 µs @ 120 MSPS

Result of 48fC input charge Input charge Vs. ADC code

FEE of the CZT

Multiplexing method

- Multiple pads of different detectors can be connected to one readout channel.
- The cathode signal of CdZnTe shows which detector has been hit.

Summary

- **□**MeGaT is aiming to open up the MeV γ-ray observation window with very high sensitivity.
- □ Technologies are innovative and challenging, but are proven to be reliable.
- □The first 30 cm cubic prototype is under build and characterized with photon beam in the end of 2024.

Summary

- **□**MeGaT is aiming to open up the MeV γ -ray observation window with very high sensitivity.
- □ Technologies are innovative and challenging, but are proven to be reliable.
- □The first 30 cm cubic prototype is under build and characterized with photon beam in the end of 2024.

Thank you for your attention!

Backup slides

The thermal bonding method

Over the past decade, We developed a novel thermal bonding method for the efficient fabrication of Micromegas detectors.

Micromegas in a Bulk

Thermal bonding processing

- No etching, no pollution
- Easy to handle at lab
- Easy to make new structures
- Φ0.5mm- Φ1mm spacers, ~1cm pitch
 →easy to clean, especially for large

area

C

\rightarrow less than 1% spacer area

Fabrication and applications

Performance of the Micromegas detector

5.9 keV X-ray test

- Gas gain: $\sim 10^5 (Ar + 7\% CO_2)$
- Energy resolution: <15% (FWHM)

Electron beams (5GeV) at DESY

- X-Y 2D readout
- Efficiency: >98%
- Resolution: 65µm

NIM-A 989 (2021) 164958 ; NIM-A 1031 (2022) 166595.

OptimizedMM01

OptimizedMM02

Performance of the Micromegas detector

Performance in high gas pressure was studied in the

PandaX-III experiment

High gain and good energy resolution were verified in high gas pressure

Test at 10bar Ar(2.5% Iso) with a 5.9 keV X-ray source

Performance of the CZT

Channel encoding method

□Pixelate CZT

- $20 \times 20 \times 15 \text{ mm}^3$ size for single piece
- § 121-pixel array with 1.72 mm-pitch
- § 128k channels in total for a 30 cm cubic prototype

Encoding method

- S Multiplexing readout channels for the pads from different CZTs.
 S The cathode signal gives the independent
- judgement. § The channel number is expected to be reduced with a factor of more than 10.

FEE for the TPC

□There are 1200 signal strips to be readout

for the 2D Micromegas (0.5mm pitch)

- □ FEE design for the TPC readout
 - § Dedicated STAGE chip for TPC (by Saclay France)
 - § Each board integrate 4 chips for readout 256 channels

STAGE chip specifics

- ✓ 64 inputs with dynamic range of 120fC、1pC、10pC
- ✓ Shaping time: 50 ns 1 us (16 values)
- ✓ Noise: < 850 e- (120fC, 200ns, input capacitance< 30pF)
- ✓ INL of charge measure: < 2%
- ✓ Counting rate: <1kHz

FEE for the CZT

□ Pixelate CZT detectors

- **§** Wide energy range: 60 keV to 3 MeV
- § Energy Resolution (corrected): < 2% @662 keV FWHM
- □ Start with the JCF032EB ASIC, optimizing selection for the

chip is still in progress

- ✓ 32 inputs
- ✓ Feedback capacitance: 15fF, 60fF, 0.5pF
- ✓ Shaping time : 0.3 us 40 us
- ✓ Noise RMS: 80e- + 12e-/pF
- ✓ INL of charge measure: < 10%
- ✓ Counting rate : < 200 kHz

Schematic design for system

□ Multiple detector system

- High dynamic range, low noise FEEs
- T0 from cathode signal of CZT
- Encoding readout to minimize the channel number
- Modular design for extensibility

R&D status: software framework

Goal: single software for simulation, reconstruction & analysis

Software stacks:

- Simulation:
 - k4SimGeant4
- Event data model:
 - EDM4hep
- Event-processing:
 - Gaudi
 - k4FWCore

Data processing (on server):

- official data production:
 - simulation & reconstruction
 - standardized & trackable
- flexible kernel:
 - Gaudi

Exploratory analysis (on desktop):

- personal data analysis:
 - quick turn-around workflow
- lightweight kernel:
 - RDataFrame (ROOT)

Current status of simulation package

Geometry features

- 1. Persistence format:
 - *XML* (dd4hep-native)
 - Covertible: TGeo, GDML
- 2. Fully-parameterized model:
 - Calorimeter
 - CZT-arrary + PCB-array
 - TPC
 - Gas + Anode-PCB + FieldCage
- 3. Tessellated CAD model:
 - Vacuum-vessel

Geant4 Running Engine

option 1: Gaudi-integrated

- Single-threaded
- No MC truth

option 2: Standalone process

- *ddg4* (dd4hep-native)
- Multi-threaded support
- MC truth support

Sensitive Detector

Calorimeter crystal:

• multi-steps per Hit

TPC gas:

• one-step per Hit

Readout segmentation

Calorimeter:

• Pixel

TPC:

- Strip/Pixel
- Extra stage needed in digitization
- Surface attached to PCB
 - Drift distance determination
 - Coordinate transformation

Background estimate[1]

1. albedo gamma-ray

[1] Ritabrata Sarkar et al. "Instruments of RT-2 experiment onboard CORONAS-PHOTON and their test and evaluation IV: background simulations using GEANT-4 toolkit" Exp Astron (2011) 29:85–107 DOI: 10.1007/s10686-010-9208-z

MeGaT design

