

Development and Preliminary Results of a Large-Volume Time Projection Chamber for X-ray Polarimetry

Davide Fiorina^{a,b}, Elisabetta Baracchini^{a,b}, Giorgio Dho^c, Paolo Soffitta^d, Samuele Torelli^{a,b}, David J. G. Marques^{a,b}, Enrico Costa^d, Sergio Fabiani^d, Fabio Muleri^d, Giovanni Mazzitelli ^c ^aGran Sasso Science Institute ^bINFN Laboratori Nazionali del Gran Sasso ^cINFN Laboratori Nazionali di Frascati ^dIAPS - INAF Istituto di Astrofisica e Planetologia Spaziali

G

S

Polarization in Astrophysics

The polarization of a photon refers to the orientation of the oscillating electric field vector perpendicular to its propagation direction.

- → Polarization of photons has always been an important dimension to study astronomical sources
- → In around 50 years of Xray astronomy, only one positive detection of X-ray Polarization: the Crab nebula Novick et al. 1972, Weisskopf et al. 1976, Weisskopf et al. 1978

Polarization in Astrophysics

The polarization of a photon refers to the orientation of the oscillating electric field vector perpendicular to its propagation direction.

- → Polarization of photons has always been an important dimension to study astronomical sources
- → In around 50 years of Xray astronomy, only one positive detection of X-ray Polarization: the Crab nebula Novick et al. 1972, Weisskopf et al. 1976, Weisskopf et al. 1978

Then IXPE arrived equipped with 3x Gas Pixel Detector 10x15x15mm DME 800 mbar Single GEM – Pad readout

- Energy range 2-8 keV
- Angular resolution: better than 30 arcsec, field of view larger than 9 arcmin
- Energy resolution: better than 25%

Launched 9 Dec 2021 \rightarrow 164 papers

Gas cel

Photoelectro

Physics and polarimetry

Scientific goal	Sources	<1keV	1-10	> 10 keV	
Acceleration phenomena	PWN	yes (but absorption)	yes	yes	
	SNR	no	yes	yes	
	Jet (Microquasars)	yes (but absorption)	yes	yes	
	Jet (Blazars)	yes	yes	yes	
Emission in strong	WD	yes (but absorption)	yes	difficult	
magnetic fields	AMS	no	yes	yes	
	X-ray pulsator	difficult	yes (no cydotron ?)	yes	
	Magnetar	yes (better)	yes	no	
Scattering in aspherical	Corona in XRB & AGNs	difficult	yes	yes (difficult)	
geometries	X-ray reflection nebulae	no	yes (long exposure)	yes	
Fundamental Physics	QED (magnetar)	yes (better)	yes	no	
	GR (BH)	no	yes	no	
	QG (Blazars)	difficult	yes	yes	
	Axions (Blazars, Clusters)	yes?	yes	difficult	
	1	1 keV	10 keV	100 keV	
XIPE: the x-ray ima	aging				

Develop a Detector capable of Measure **Polarization** through **photoelectric effect** for energies >10keV

polarimetry explorer (unipa.it)

Diffraction on Photoelectric effect multilayer mirrors

Compton scattering

S

GRAN SASSO

G

S

Photographing particle tracks

19/06/2024

19/06/2024

CXGNO Detectors Timeline

Davide Fiorina - GSSI & INFN LNGS

From Underground to Space

From Underground to Space

G

S

Introduction

- Measure the Angular Resolution of our detector to electron
 - Collimated 90Sr shooting perpendicularly to the GEM surface (and readout plane)
 - 2D tracking (possibility to have 3D in future) and energy measurement

- Measure the performance of a triple-GEM TPC optically readout for polarimetry in the range [10,60] keV
 - Infer the expected modulation factor µ → detector response to a fully polarized source
 - Deduce the expected figure-of-merit µ√ε → modulation factor weighted for the efficiency. Related to Minimum Detectable Polarization

$$-\pi - \pi/2 \qquad 0 \qquad \pi/2 \qquad \pi$$

The MDP is the maximum polarization that we expect to measure with a probability of 99%

The modulation factor is the 'efficiency' of detecting fully polarized photons

Davide Fiorina - GSSI & INFN

when the true polarization is zero

Conceptual Map

Reconstruction and Direction

The directionality algorithm is inspired from IXPE:

- Optimized for our energy range
- New strategies under evaluation

Astroparticle Physics 133, 102628 (2021)

19/06/2024

Tracks reconstructed with the actual reconstruction code used by the CYGNO collaboration

 Low energy electrons <10keV dominated by diffusion in the GEM, limited directionality

-Journal of Instrumentation 15, T12003 -Measurement Science and Technology 34, 125024

Measurement Results

Measurement Results

Angular Resolution & Modulation Curve

Using the deconvolved RMS as sigma of a Gaussian, then convolve with a

Distributions are nearly-gaussian

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

Angular Resolution & Modulation Curve

Distributions are nearly-gaussian

e Energy (keV)

S

GRAN SASSO

G

S

Modulation Factor

 $N_{100\%}^{\rm max}$

 $\mu =$

Modulation Factor

Other Gases

He/CF₄ 60/40 - He/CF₄ 40/60 - Ar/CF₄ 60/40 – Ar/CF4 80/20 Other Gases tested!

Ar-based mixtures!

software), the figure-of-merit can be

increased by more than a factor 3-4 in

- We proudly operate a triple-GEM with optical Readout for Dark Matter Search, and we want to apply our detector concept to X-ray polarimetry.
- Polarimetry with our concept appears very promising in the range [10,60] keV From preliminary measurement, we may infer for X-ray energy above 20 keV
- $\mu > 0.8$ (IXPE <0.8 not to compare)
- ε : [1E-4, 5E-2] (IXPE [2E-1,1E-2] not to compare)
- **Future tests:**
- Hamamatsu ORCA Quest qCMOS
 - With 3D implementation
- Different gas mixtures, pressures and ratios

We proudly operate a triple-GEM with optical Readout for Dark Matter Search, and we want to apply our detector concept to X-ray polarimetry.

- Polarimetry with our concept appears very promising in the range [10,60] keV From preliminary measurement, we may infer for X-ray energy above 20 keV
- $\mu > 0.8$ (IXPE <0.8 not to compare)
- ε : [1E-4, 5E-2] (IXPE [2E-1,1E-2] not to compare)
- **Future tests:**
- Hamamatsu ORCA Quest qCMOS
 - With 3D implementation
- Different gas mixtures, pressures and ratios
- Polarized X-ray Beam test @ INAF TorVergat
 - Validate Simulation
 - Provide full simulation on an astronomical physics case

BACKUP

Davide Fiorina - GSSI & INFN LNGS

High-precision 3D TPC with optical readout via PMT + sCMOS

High-precision 3D TPC with optical readout via PMT + sCMOS

High-precision 3D TPC with optical readout via PMT + sCMOS

<u>SCMOS</u> High-granularity X+Y+Energy measurement

-0.8

400

450

500

600

0 650 Time (ns)

19/06/2024

High-precision 3D TPC with optical readout via PMT + sCMOS

sCMOS characteristics & He/Ar:CF4 emission spectra

	Hammamatsu	# of pixels	Pixel size [um]	Sensor area [cm ²]	Dynamic range	Readout noise (enc)	Mix exposure	
	Orca Flash	2048 x 2048	6.5 x 6.5	1.33 x 1.33	37000:1	1.4 (1.6) rms	33 (10) us	
	Orca Fusion	2304 x 2304	6.5 x 6.5	1.498 x 1.498	21400:1	0.7 (1.4) rms	280 (17) us	Used for the reasult shown
	Orca Quest	4096 x 2304	4.6 x 4.6	1.884 x 1.060	25900:1	0.27 (0.43) rms	200 (7.2) us	Tested
	Orca Quest2	4096 x 2304	4.6 x 4.6	1.884 x 1.060	25900:1	0.27 (0.43) rms	200 (7.2) us	Under Procurament
- 100	QE and	He:CF ₄ emission		Undid Host				

QE and He:CF₄ emission

NIM A 504 (2003) 88-92

G S

S

The University

Sheffield.

UNICAMP

Of

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

19/06/2024

CXGNO:ectors and timeline

Davide Fiorina - GSSI & INFN LNGS

CXGNO ectors and timeline

LIME

- The first large-size prototype
- Currently taking data

CYGNO04

- The first detector for physics runs
- Currently under design

Long Imaging ModulE

PMT NAZIONALI DEL GRAN SASSO Integrated 50 L active volume **Z + Energy measurement** 33x33 cm² LIME SETUP opper Rings Straight track: DETECTOR ONLY Drift MAX WEIGHT = 200 I direction (4x) PMT sCMOS - CAMERA CMOS sensor Copper Cathode 50 cm Field Cage Successfully Running since 2022 at the underground 4000 4500 5000 5500 6000 6500 700 laboratory of Gran Sasso, Italy Tilted track: Drift 1 sCMOS + 4 PMT + 3 GEMs 33 x 33 cm2 readout area 50 cm drift directio length

1.498 x 1.498 cm₂ sensor 6.5 x 6.5 um₂ pixels 2304 x 2304 pixels Imaging 36 x 36 cm₂ area Effective pixel granularity 155 x 155 um₂ Sensor geometrical acceptance Ω =1.1 x 10-4

LIME

G

S

GRAN SASSO

S

ICE INSTITUTE

33

550

500

600

650

Time (ns)

350

CYGNO04

Common Cathode TPC 2x <u>3 sCMOS + 8 PMT + 3 GEMs</u> <u>80 x 50 cm2 readout</u> area 50 cm drift length

- 0.4m³ Volume
- Last generation sCMOS
 - **Better granularity**
 - Lower noise
- More radiopure materials

tested

16/10/2024

Introduction

Measure the performance of a triple-GEM TPC optically readout for polarimetry in the range [10,50] keV

- Measure the expected modulation factor µ → detector response to a fully polarized source (if 1 is perfect if 0 is non sensible)
- Measure the expected figure-of-merit µ√ε → modulation factor weighted for the efficiency. Related to Minimum Detectable Polarization
- Measure the Angular Resolution of our detector to electron
 - Source is 90Sr shooting perpendicularly to the GEM surface (and readout plane)
 - Ionization tracks are multiplied by a triple-GEM structure, and the scintillation light from the CF4 gas is read by a CMOS camera
 - 2D tracking (possibility to have 3D in future) and energy measurement
- I will elaborate on the measurement with the standard gas mixture He/CF4 60/40 1atm, but other gases have been

no background is: $MDP = \frac{4.29}{\mu\sqrt{N}}$ N=Flux×efficiency

Conceptual Map

CYGNUS-RD/reconstruction: Camera and scope analysis tools (github.com)

▰┛

Test @ INAF

The directionality algorithm is entirely derived from IXPE (main developer S.Torelli)

- IP→moving circularly where skewness is positive far away from Barycenter
- DIR→maximizes RMS of selected points around IP with exponentially scaled intensity

fiorotto8/CygnoAnal (github.com)

Intrinsic Angular spread simualtion

Simulation with a simple geometry:

- Cylindrical gas volume h=5cm, r=3.7cm
- Field cage rings, 1cm with SS ring 0.1cm radius
- 90Sr Source with r=1mm tungsten collimator
- 90Sr decay, electrons tracked only in the gas volume!
 - Deposited energy measurement in sensitive volume

Full containment:

- Track without hits in 5mm from the border or the circle
- But allowed if the hit is in the +/- 30° region of the entering angle
- No containment in cylinder height (we are only 2D for now)

fiorotto8/MANGO_RadioactiveSource: Simulation of Cd-109 Radioactive source in MANGO (github.com)

Davide Fiorina - GSSI & INFN

Other results

He/CF4 at atmospheric pressure is great for DM searches. However, it may should be optimized for

polarimetry

Davide Fiorina - GSSI & INFN

- Argon ensures up to an order of magnitude of efficiency
 - More CF4 helps because larger density, but photoelectric

Iteraction probability scales linearly with density but scale with Z⁵!!!

Modulation Factors and figure-of-merits

