

The UltraLow Material Budget GEM based TPC used for Tracking

Francisco García Helsinki Institute of Physics

Outline

- 1. Introduction & Motivation
- 2. Tracking at different facilities
- 3. Test beam at the SPS H4 beamline
- 4. Summary

INTRODUCTION

The GEM-TPC in twin configuration consists of two GEM-TPCs inside a single vessel. One of them is rotated 180° on the middle of the horizontal plane w.r.t. the other.

The **TWIN concept** was introduced in collaboration between the Helsinki and Bratislava group sometime ago to cope with tracking at high rate. By constraining the time of the signals on both GEM-TPCs the ambiguity of association of hits to single track is drastically reduced.

MOTIVATION

To perform tracking of particles with minimal

distortions to its trajectory in high rate conditions.

Tracking Reconstruction

Low material budget

2.81e-3 X/X₀

- Main contribution from gas
 volume
- In contrast one triple GEM detector à la TOTEM will have 7.30e-3 x/x₀

The sum of drift time of both field cages represent the total drift, which is called the Control Sum

- Fast readout electronics with ~4 MHz per VMM3a.
- Time resolution O(2ns)
- Large Dynamic range

TRACKING at DIFFERENT FACILITIES

Francisco García – Martin Conference in Hefei – China

Most Relevant Results at GSI

Test beam with ⁶⁴Ni ions: Spatial resolution 125 μ m in X, 150 μ m in Y \rightarrow FRS S4 (2010)

Test beam with ¹⁹⁷Au ions: Spatial resolution 300 μ m in X \rightarrow FRS S4 (2012)

Test beam with Xe and C ions: Spatial resolution 188 μ m in X, 147 μ m in Y \rightarrow FRS S4 (2016)

Test beam with U ions: Spatial resolution 740 μ m in X \rightarrow FRS S4 (2019)

For P10 (ArCH₄ 90/10) the tracking efficiency >95%

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR

F. García^{a,*}, T. Grahn^{a,b}, J. Hoffmann^c, A. Jokinen^{a,b}, C. Kaya^c, J. Kunkel^c, S. Rinta-Antila^{a,b}, H. Risch^c, I. Rusanov^c, C.J. Schmidt^c, H. Simon^c, C. Simons^c, R. Turpeinen^a, B. Voss^c, J. Äystö^{a,b}, M. Winkler^c

^a Helsinki Institute of Physics, University of Helsinki, 00014 University of Helsinki, Finland
 ^b Department of Physics, University of Jyväskylä, 40014 University of Jyväskylä, Finland
 ^c GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291, Germany

M. Luoma, F. Garcia et al., In-beam test results of the Super-FRS GEM-TPC detector prototype with relativistic uranium ion beam. NIMA, 1052 (2023) 168262.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS

RESEARCH

TRACKING at DIFFERENT FACILITIES

Projectile: μ Momenta up to 60 MeV/c Intensity up to 10⁵ μ /sec

First campaign at the $S\mu S/\pi E1 - PSI$

Successful Operation in:

In the first campaign in ArCO₂ (75/25)

In second campaign in HeCO₂ (90/10)

Combined Spatial Resolution:

For ArCO₂ (75/25) @ 40 MeV/c:

- X → 1.083 ± 0.113 mm
- Y → 1.357 ± 0.172 mm

For HeCO₂ (90/10): Analysis ongoing

The Plans are:

- 1. Test the GEM-TPC with pixel readout.
- 2. Single GEM-TPC configuration.
- 3. Design a new miniaturized GEM-TPC for MIXE.

Talk by: Xiao Zhao, A novel technology for element-sensitive 3D tomography

The first campaign for GEM-TPC - HGB4 at the S S μ S/ π E1 - PSI

First campaign target Configuration:

- Stainless: Fe (66%), Cr (18%), Ni (12%)
- Brass: Cu (63%), Zn (37%)
- Copper (ETP): Cu (100%)
- Anticorodal: AI (97%)

Talk by: Xiao Zhao, A novel technology for element-sensitive 3D tomography

The second campaign for GEM-TPC - HGB4 at $S\mu S/\pi E1$ - PSI

 The gas was changed by HeC0₂ (90/10).

 The GEM-TPC in twin configuration (HGB4-2) was flagged to the beam pipe.

• The target was refurbished.

• Ten (10) high purity Germanium detectors were added to the setup.

The second campaign for GEM-TPC - HGB4 at $S\mu S/\pi E1$ - PSI

Procedure to flange the GEM-TPC in twin configuration (HGB4-2) to the beam pipe at $S\mu S/\pi E1 - PSI$.

Particles: μ and π at 180 GeV/c

Beam spot: for μ 10cm in X and Y for π 6 mm in X and Y

Intensity: for $\mu \rightarrow 80$ k/spill for $\pi \rightarrow 80$ k – 10M/spill

Working gas:

Readout Electronics: VMM3a/SRS 2024

HGB4-2 at the SPS H4 beamlin

Cluster Strip multiplicity on $ArCO_2$ (70/30)

Cluster Strip multiplicity on $HeCO_2$ (90/10)

For Muons

Cluster strip multiplicity is the quantity of strips fired in one reconstructed cluster

GEM-TPC Top: Voltage at the Cathode: 6780 V Voltage at the GEM Stack: 3200 V Field in the Field Cage: 358 V/cm

GEM-TPC Bottom:

Voltage at the Cathode: 6680 V Voltage at the GEM Stack: 3100 V Field in the Field Cage: 358 V/cm

GEM-TPC Top:

Voltage at the Cathode: 5550 V Voltage at the GEM Stack: 2150 V Field in the Field Cage: 340 V/cm

GEM-TPC Bottom:

Voltage at the Cathode: 5560 V Voltage at the GEM Stack: 2160 V Field in the Field Cage: 340 V/cm

Cluster multiplicity

The cluster Multiplicity is the quantity of cluster within a full drift time

GEM-TPC, Top Beam Track Map GEM-TPC, Bottom **Multiplicity Multiplicity** Amount Amount GEM-TPC Y axis, mm 0.345 0.351 0 0 0.407 0.406 1 1 2 0.157 2 0.153 3 3 0.045 0.043 4 0.018 0.016 4 5 5 0.029 0.031

GEM-TPC X axis, mm

Drift Velocity Calibration

GEM-TPC Drift Velocities

• By the use of scintillation grid detector:

- By the correlation of the hits from the tracker:
 - Prealigment.
 - Selection straight tracks (small χ²).
 - Fine alignment.
 - Correlation of the GEM-TPC clusters to the first reference tracker plane in X and Y.

Correlation plot of the GEM-TPC Top vs Tracker:

Correlation plot of the GEM-TPC Bottom vs Tracker:

GEM-TPC Bottom Correlation

Francisco García – 🔟 🖳 Conference in Hefei – China

Indications of rate capability by looking at the instantaneous peak rate on $ArCO_2$ (70/30)

At ~ 677.66 ns \rightarrow 1.48 MHz, O(10%) of the tracks

Indications of rate capability by looking at the instantaneous peak rate on $HeCO_2$ (70/30)

At ~ 524.44 ns \rightarrow 1.91 MHz, O(10%) of the tracks

Cluster Charge Distribution

GEM-TPC, Muons

GEM-TPC, Muons

HeCO₂ (90/10)

Efficiency with fiducialization:

Tracking Efficiency for muons

Spatial resolution in X:

Spatial resolution in Y:

Residual Distribution for different gas mixtures

17.10.24

Francisco García – Martin Conference in Hefei – China

Pions position scan for ArCO₂ (70/30) gas mixture

$$\sigma_{\rm HGB4-2} = \sqrt{\sigma_{GEM-TPC}^2 - \sigma_{Tracker}^2}$$

Becasue of small χ^2 cut the $\sigma^2_{Tracker} \cong 50 \ \mu m$

Pions position scan for HeCO₂ (90/10) gas mixture

Pions position scan for HeCO₂ (70/30) gas mixture

SUMMARY

- The synchronization of DAQs is very crucial and a paintful task, therefore work on a TLU-like unit for DRD1 is of utmost importance.
- The work of the GEM-TPC (HGB4-2) with HeCO₂ (90/10) show good stability and high spatial resolution. This changing of the gas was proposed to improve the spatial resolution for MIXE experiment.
- The use of Jupyter Notebooks provides a good platform for students to make important contributions to the analysis.
- The support given by the GDD lab during the integration of the VMM3a/SRS DAQ and the commission was indispensable for the success on these measurements.
- The RD51/DRD1 reference tracker has good operation stability and reliability, which was shown throughout the whole campaign.

Collaborators

Francisco, Bernhard, Xiao, Michael and Karl (left to right)

Akcknowledgements to all the collaborators in the GDD lab and RD51 test beam coordination especially to: Eraldo, Max, Lucian, Dorothea, Hans, Yorgos, Alex, Benjamin and Miranda. To Collaborators at the Micro Pattern Technology Workshop: Rui, Alexandra, Bertrand, Alexis, Antonio and Benilde.

To collaborators at the Detector Laboratory at GSI: Christian, Bernd, Holger, Jochen, Chan, Andrei, Christoph, Hennings, Jan and Nik. To collaborators at HIP: Raimo, Jouni and Minna.

The 8th International Conference on Micro-Pattern Gaseous Detectors Oct.14th - Oct.18th 2024 USTC·Hefei, China

Thank you for your Attention

Francisco García – Man Conference in Hefei – China

BACKUP SLIDES

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 1052, July 2023, 168262

Full Length Article

In-beam test results of the Super-FRS GEM-TPC detector prototype with relativistic uranium ion beam

<u>M. Luoma</u>^{a b} A M, <u>F. García</u>^a, J. Äystö^{a b}, <u>T. Blatz</u>^c, <u>D. Chokheli</u>^d, <u>H. Flemming</u>^c, <u>K. Götzen</u>^c, <u>T. Grahn</u>^{a b}, <u>A. Jokinen</u>^{a b}, <u>C. Karagiannis</u>^c, <u>N. Kurz</u>^c, <u>S. Löchner</u>^c, <u>C. Nociforo</u>^c, <u>S. Rinta-Antila</u>^{a b}, <u>C.J. Schmidt</u>^c, <u>H. Simon</u>^c, <u>R. Turpeinen</u>^a, <u>B. Voss</u>^c, <u>P. Wieczorek</u>^c, <u>M. Winkler</u>^c

BEAM H4, PPE134 – INSTALLATION (DRD1, 10 April – 24 April)

- ArCO₂ (70/30)
- HeCO₂ (70/30)
- HeCO₂ (90/10)

PAUL SCHERRER INSTITUT

Drift time calibration – Fiber Detector

- Assembled, tested and mounted new detector
 - precision 3D printed (35um) mounting structure
 - 3 scintillating fibers in exactly 4mm distance
 - high speed SiPM premounted on readout board
- Drift time calibration successful!
 - cut on parallel tracks (constant sum of drift time)
 - drift velocity: (9.30 +/- 0.03) mm/us

The second campaign for GEM-TPC - HGB4 at $S\mu S/\pi E1$ - PSI

The second campaign for GEM-TPC - HGB4 at the S S μ S/ π E1 - PSI

Target Configuration:

- Molybdenum
- Tantalium and Copper
- Tungten and Iron
- Brass: Cu (63%), Zn (37%)

Is the P10 GAS MIXTURE a SOLUTION for the SUPER-FRS?

- □ Until now the gas mixture used has been P10 ArCH₄ (90/10%) → Which has a severe aging problems at high rate
- □ Next gas mixture will be: $ArCO_2$ 70/30% \rightarrow for Testing whole system and Characterization
- \square Possible choice can be: ArCO₂CF₄ (45/15/40%)

Gas mixture	Drift Field, V/cm	Drift Velocity, cm/µs	D _L , µm/ √D(cm)	D _⊤ , µm/ √D(cm)	Drift Time, µs
P10	320	4.2	257.2	603.8	2
ArCO ₂ (70/30)	600	1.5	150.1	134.0	6.6
ArCO ₂ CF ₄ (45/15/40)	600	2.5	117.3	118.9	4

Most Relevant Results at GSI

Most Relevant Results at GSI

ArCO₂

Existing - AIDA-2020

- Current production version
- 6 trigger inputs
- 4 DUT connections
 - LVDS on HDMI
 - But direction of each line can be swapped in hardware to allow different firmware mapping
- Low jitter clock
- Hardware permits optical distribution of clock/trigger
- In small desktop case or rackmount case

This project has received funding from the European Union's Horizon 2020 research and inn

David Cussans,

https://indico.cern.ch/event/1323113/contributions/5823585/attachments/2836907/4959134/cussans_aida_tlu_bttb12_april2024.pdf

17.10.24

Francisco García – Main Conference in Hefei – China