Application of Micro Pattern Gaseous Detectors in Space X-ray Polarimetry

Weichun Jiang

on behalf of the eXTP-PFA Consortium and WXPT Group

The 8th International Conference on Micro Pattern Gaseous Detectors (MPGD2024)

USTC-Hefei, China, Oct.14th - Oct.18th 2024

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Outline

- 1. Overview of Space X-ray Polarimetry
- 2. GPD in eXTP mission
- 3. TPC in WXPT mission
- 4. Summary

X-ray Polarimetry

Timeline of Space X-ray Polarimetry Missions

enhanced X-ray Timing and Polarimetry Mission (eXTP)

- Scientific Objectives: Understanding the extreme laws of astrophysics under conditions of extreme gravity, extreme magnetic fields, and extreme density through the observation of black holes, neutron stars, or quark stars.
- Detection Capability: 0.5-10 keV, ~2700 cm²@6 keV; High time resolution, high energy resolution, and high precision polarization detection
- Satellite Design:
 - Apogee altitude of 110,000 km, highly elliptical orbit.
 - Total weight of 4.0 tons
 - designed lifespan of 5 (goal 8) years.
- Status:
 - The next-generation flagship X-ray space observatory of China,
 - Scheduled for launch in 2030.

Polarimetry Focusing Array(PFA) onboard eXTP

What can PFA do:

• Imaging

• Polarimetry

• Timing

• Spectrometry

Simulating results of the imaging polarization for the SN1006

Simulating results of the imaging polarization for crab

eXTP payload configuration

Payload	Configuration	Technical performances
		Effective Area: \geq 3300 (4000) cm ² (1-2keV); \geq 2000 (2700) cm ² @ 6 keV
Spectroscopy	6 focusing telescopes. Focal length: 5.25m Focal plane detector: multi pixels SDD array	Energy range: 0.5~10 (0.3-10) keV; Energy resolution: ≤ 180 (150) eV@ 6 keV
Focusing Array (SFA)		FOV: $\geq \phi 12 \operatorname{arcmin};$
		Angular resolution: HPD \leq 1 arcmin, W90 \leq 3 arcmin
		Timing resolution: $\leq 10 \ \mu s$; Timing accuracy $\leq 1 \ (0.5) \ \mu s$
		Dead time: ≤ 6% @ 1 Crab
		Effective Area: \geq 180 (220) cm ² @3 keV
		Energy range: 2~8 keV; Energy resolution: ≤1.8 (1.5)
	3 focusing telescopes.	keV@ 6 keV
Polarimetry Focusing	Focal length: 5.25 m	FOV: 8 arcmin (square), Angular resolution: HPD < 30
Array (PFA)	Focal plane detector:	(15) arcsec
	Gas pixel detector(GPD)	Minimum detectable polarization (MDP) : $\leq 3\%$ (1mCrab,
		10 ⁶ s)
		Timing resolution: $\leq 10 \ \mu s$; Timing accuracy $\leq 4 \ \mu s$

The PFA is a China-Italy joint payload led by CAS/IHEP.

Effective Area of eXTP

PFA focal plane camera design

Technical specification of GPD

Parameter	Value
Thickness of the absorption gap	10 mm
Thickness of the transfer gap	0.7 mm
Thickness of the Be window	$50 \mu \mathrm{m}$
Active area	$15 \times 15 \text{ mm}^2$
Readout pitch	$50 \mu \mathrm{m}$
Gas Volume	$60 \times 60 \times 10 \text{ mm}^3$
Gas mixture	Pure DME
Filling pressure	800 mbar

Parameter of GPD

Parameter	Value
Number of pixels	105600 (300 × 352)
Horizontal pitch	$50.00 \mu\mathrm{m}$
Vertical pitch	43.30 μm
Shaping time	$4 \mu s$
Pixel gain	$\sim 400 \text{ mV fC}^{-1}$
Pixel Noise	22.5 e^- ENC
Dynamic range	1 V (~ 30k e ⁻)

Parameter	Value	
Number of holes	112008 (359 × 312)	
Horizontal pitch	43.30 μm	
Vertical pitch	$50.00\mu\mathrm{m}$	
Hole diameter	30 µm	
Hole diameter dispersion	~ 1 μ m (typical)	
Top-bottom alignment	$\sim 2 \mu m$ (typical)	
Metal coating	Copper	
Coating thickness	$5 \mu \mathrm{m}$	
Substrate	Liquid crystal polymer (LCP)	
Substrate thickness	$50 \mu \mathrm{m}$	
Manufacturing process	Laser etching	
Typical operating voltage	$\sim 470 \text{ V}$	
Gain gain scaling	$\propto \exp(\sim 0.03 \text{ V})$	
Working effective gain	~ 200	

Parameter of GEM

Baldini, L., et. al, Astro Phys, 133 (2021)

Parameter of ASIC

PFA telescope "end-to-end" testing (mirror + detector).

- Completed "end-to-end" testing at the 100-meter beamline in IHEP.
- Latest angular resolution of Mirror: 26' (HPD).

PFA telescope "end-to-end" testing: energy resolution

PFA telescope "end-to-end" testing: polarization

4.51 keV :

Polarized: $\mu = 0.41 \pm 0.01$ unpolarized: $\mu = 0.021 \pm 0.005$

5.9 keV :

70%Polarized: μ = 0.410 ± 0.004 > Modulation factor: 0.59

unpolarized: μ = 0.0095 ± 0.0038

Detection efficiency of the GPD(standard detector: SDD).

Modulation factor and Quality factor of GPD

In-orbit flight verification of GPD on CubeSats

before alitch

after glitch

ApJ 2021

- "Polar light 1": Launched in October 2018 aboard the "Tongchuan-1" CubeSat.
- "Polar light 2": Launched in February 2022 aboard the "Changxing Leishen" CubeSat.

Volume 4 Issue 5, May 2020

A glitch in time

A CubeSat hosting the PolarLight payload has made i to conduct polarimetry in the soft X-ray band from s than 40 years after this opportunity was last available astronomers. Hua Feng and colleagues observed the fortunately catching the pulsar during a glitch.

See Feng et al.

 Image: Second Second

² Department of Asynonomy, Tsinghua University, Beijing (10064). People's Republic of China ³ INFN-Fis. Largo B. Pontecovo 3, 15-6127 Piso, Italy ⁴ Key Laboratory for Particle Astrophysics. Institute of High Energy Physics. Chinase Academy of Sciences, Beijing (1007). People's Republic of China ⁵ Department of Astronomy, School of Physics, Peding University, Beijing (1007). People's Republic of China ⁷ School of Electronic and Information (Energy Physics, Chinase 100, 1-00135 Rome, Italy ⁷ School of Electronic and Information (Ecology Const. La, Nanjing 21100). People's Republic of China ⁸ INFN, Sezione di Torino, Via Pietro Giuría 1, 1-10125 Torino, Italy ⁹ Received 2021 Morth 24: excited 2021 April 2: accepted 2021 April 2: 22 INFIGHE Of Linase, People's Republic of Linas ⁹ Received 2021 Morth 24: excited 2021 April 2: accepted 2021 April 2: 22 INFIGHE OF Linase ⁹ Received 2021 Morth 24: excited 2021 April 2: accepted 2021 April 2: 2016 April

Abstract

We report follow-up observations of the Crab Nebula with the PolarLight X-ray polarimeter, which revealed a possible variation in polarization associated with a pulsar glitch in 2019. The new observations confirm that the polarization has recovered roughly 100 days after the glitch. With the new observations, we find that the polarization angle (PA) measured with PolarLight from the total nebular emission has a difference of $18'0\pm4'6$ from that measured 42 yr ago with OSO-8, indicating a secular evolution of polarization with either the Crab Nebula or pulsar. The long-term variation in PA could be a result of multiple reconnection, or movement of synchrotron emitting structures in the nebula.

magnetic geometry.

Unified Astronomy Thesaurus concepts: Polarimetry (1278); Rotation pow (1815); X-ray sources (1822)

WXPT:Wide band X-ray Polarization and imaging Telescope

Total Mass:	≤500 kg
Orbit inclination:	28°
Hard X-ray Optics :	4 module
Focal length:	20m

- Detailed design small satellite for X/γ ray polarimetry
 Broad energy coverage: 3-60keV (focusing optics) 50-500keV (Large field of view)
- Highest polarimetry sensitivity at hard X-ray

Preliminary design of the WXPT

WXPT:Wide band X-ray Polarization and imaging Telescope

- Broad energy coverage:from soft Xray to gamma ray
- Highest sensitivity at hard X-ray
- Large sensitive area and field of view at soft γ-ray
- ➤ To be launched 2035

3. Preliminary design of the WXPT Soft/hard X-ray polarimetry T D

Heat sink

TPC Simulation

- GAS: DME or 0.5MDE+0.5Ne : MF>0.4@6 keV
- pure DME < 4 keV</p>
- > 0.5MDE+0.5Ne 4 ~10 keV

0.5DME+0.5Ne, 10cm, 0.6 atom

The TPC is currently being under testing

Summary

- MPGD is suitable as a high-sensitivity X-ray polarization detector.
- GPD has been adopted by eXTP-PFA which will be launched in 2030.
- TPC will be applied in WXPT and launched in 2035.

