

The 8th International Conference on Micro-Pattern Gaseous Detectors

Development of Readout Electronics for CEPC TPC

Liu Canwen^{*1}, Yang Yanxiao^{*1}, <u>Deng Zhi</u>^{*1}, Gong Guanghua^{*1}, Dong Jianmeng^{*1}, Qi Huirong^{*2}, Chang Yue^{*2}, She Xin^{*2}, Zhang Jinxian^{*2}, Wang Jianchun^{*2}, Zhang Jian^{*2}

1: Tsinghua University 2: Institute of High Energy Physics, Chinese Academy of Sciences

Oct. 14 – 18 2024 USTC Hefei, China

OUTLINES

| TPC and its readout electronics

| Progress on pad readout

| Progress on pixel readout**04** | Summary

01 TPC and its readout electronics

CEPC TPC

- > CEPC track detector system: silicon combined with gaseous chamber as the tracker and PID
- TPC is as the baseline main tracker in CEPC ref-TDR, achieving good momentum resolution and particle identification

Pad Readout for TPC as in ILC

Waveform Sampling

Signals induced in readout pads in mm²: ~1mm x 6mm

- More parallel to the collection plane ~ short duration
- > More perpendicular to the collection plane ~ long duration ¹¹
- Ballistic Loss vs signal pileup
- Acquire amplitude and time information at the same time

Pixel readout for TPC

- Combination of a pixel ASIC with TPC, e.g., 55 um using TPX3/4
- > The signal duration variation reduces as the pixel size
 - > no need for waveform, only charge and arrival timing
- > PID improvement: $dE/dx \rightarrow dN/dx$

Gridpix: Jochen's slide in MPGD 2017

02 Progress on pad readout for TPC

Current ASICs for pad TPC readout

Development of the WASA chip

Functional block diagram

> Main Specifications

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA
ТРС	ALICE	ILC	ALICE upgrade	CEPC
Pad size	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²	1x6 mm ²
Number of channels	5.7× 10 ⁵	$1-2 imes10^6$	5.7 × 10 ⁵	2 x×10 ⁶
Detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Analog shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Waveform sampling	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Sampling accuracy	10 bit	10 bit	10 bit	10 bit
Power consumption of AFE	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power consumption of ADC	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
Power consumption of DSP	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
Power consumption of all	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS process	250 nm	130 nm	130 nm	65 nm

> Response of the digital filters:

- > AFE: gain~10 mV/fC, peaking time~160 ns, Qin=120 fC
- Sampling rate of ADC: 40 MHz
- > Digital trapezoidal filter : Rise time~600 ns, Flat time 200 ns

> Noise

- > AFE: gain~10 mV/fC, peaking time~160 ns
- Sampling rate of ADC: 40 MHz
- > Digital trapezoidal filter : Flat time 200 ns

 $\sum t_i \times f(t_i)$

Time center:t =

Timing performance

- > AFE: gain~10 mV/fC, peaking time~160 ns
- Sampling rate of ADC: 40 MHz
- Digital trapezoidal filter : Rise time~600 ns, Flat time 200 ns
- > Timing algorithm: Time center of gravity method

➤ Test with TPC: Fe-55

Working conditions of TPC:

- GEM voltage: 310 V
- Drift electric field: 3.23×10^4 V/m
- Gas: T2K (Ar/CF₄/iC₄H₁₀ 95/3/2)

Working conditions of electronics:

- Gain: 20 mV/fC
- Sampling rate : 30 MHz
- Self-triggered mode

Transient waveforms and Fe-55 Spectrum

Tracking performance

CUBES: Common Unit Based Electronics System

WASA-FE prototype

- 4 WASA chip: 64 channels
- Analog input ~ SAMTEC QTE socket
- Onboard PLL CDCM6208~ADC clock and data clock
- DC 12V from FE-Link, DC-DC \rightarrow LDO \rightarrow WASA

WASA-FE test setup

1 WASA-FE 1 CUTE-WR-A7 1 FELink_STK 1 WRS

Signal source: The signal generator generates a square wave signal Signal injection: 1pF capacitor is connected in series at the input Trigger mode: external trigger

The host computer obtains the data and saves the disk

F main():

hostIP = "192.168.10.10"
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((hostIP, 5000))
print("Link connected!")
filename = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')+".dat"
with open(filename, "wb") as file:
 while True:
 data = sock.recv(2048)
 file.write(data)
 file.flush()

WASA-FE test results

CR-RC Output

Digital trapezoidal filter Output

> Ongoing:

- Engineering run: ~1000 WASA chip
- More stable WASA-FE boards will be built

03 Progress on pixel readout for TPC

Why pixel readout for CEPC TPC

- > CEPC: 10-year Higgs \rightarrow 2-year Z \rightarrow 1-year W
- > PID: dE/dx \rightarrow dN/dx \sim 3%
- > High rate: smaller pixel \rightarrow lower noise \rightarrow lower gain \rightarrow lower ion feedback

Readout challenging for pixel TPC

> What we have now for large area in ~1m2

1mm x 6mm

(0.1-1) mm x (0.1-1) mm?

55um x 55um

Readout challenging for pixel TPC

> What we may look for....

High density PCB process Precision: 100 um Pads: 10 mm

Chip packaging process Precision: 1-10 um Pixels/Pads: 0.1-1 mm IC process Precision: 0.1 um Pixels: ~10 um

Readout challenging for pixel TPC

Advanced chip packaging technologies

Interposer based pixel TPC

- Pixel readout electronics
 - Multi-ROIC chips + Interposer PCB as RDL
 - High metal coverage
 - Four-side buttable
- Low-power energy/time measurement ASIC: TEPIX
 - Low noise: ~100 e noise
 - 5 ns drift time resolution
 - Low power: 100 mW/cm2 (250uW/ch)

Interposer based pixel TPC

- Interposer design
 - > 8 TEPIX chips in the same RDL module
 - L/S: 15 um/15 um, hole size: 50 um, 8 layers
 - Parasitic capacitance optimized

0.5mm x 0.5mm pixels

Readout ASIC: TEPIX

- Block diagram
 - Charge Sensitive Preamplifier(CSA)
 - CDS amplifier provides additional gain and noise shaping
 - Wilkinson type ADC each pixel
 - Timing discriminator with Time of Arrival information

(from top-level)

2.2mm

5.6mm

Readout ASIC: TEPIX

 Test results Power Co Timing ~ Noise ~ 3 	nsumption ~ 0.5m < <1LSB(10ns) 800e	Sigma=0.57LSB W/ch ³⁰⁰ ²⁰⁰ ⁹⁰ ¹⁰⁰ ¹⁰⁰ ¹⁰⁰	Sigma=14.7LSB
Parameter	Spec	0 7427 7428 7429 7430 7431 7432	0 3760 3780 3800 3820 3840 3860 3880 3900
Number of channels	128	Timing Results	Energy Output (LSB) Energy Results
Power Consumption	Analog<30mW	4000 Gain=314.2LSB/fC	700
	Digital<30mW		600 - Block3 - Block4
ENC	~300 e(high gain)		<u>0</u> 500 -
Dynamic Range	25fC(high gain)		
	150fC(low gain)	ົ້ນ ພ 2500 -	
INL	<1%		and a strain the same restrict in Ania is a strain the
Time Resolution	<10ns	2000 4 5 6 7 8 9 Input Chaege (fC) Gain	200 20 40 60 80 100 120 140 Channel ID Noise

Prototype for beam test

- Pixel size: 0.5mm x 0.5 mm pixel
- > Pixel number: 5 mm x 150 mm \rightarrow 10 x 300 channels

Prototype for beam test

Test board and setup

Prototype for beam test

Preliminary test results with calibration signal:

- Charge injected ~6fC;
- 4 triggers, gap between each trigger 40us

Trigger time and energy histogram:

Results:

- got expected trigger time.
- got expected energy value according to the charge injected.
- some channels has lower energy of 1st trigger, need further investigation.

Energy:

0000000000

30000000 000000000

000000000

000000000

000000000

4666688

00000

000000000

0000000

0000000

00000

......

........

.........

........

----........

..........

...............

.........

...........

..........

...................

Summary

- FPC can realize large-volume, 4π solid angle coverage of three-dimensional particle track detection, and has a wide range of application prospects in basic physics experiments, astronomical observations, and nuclear energy development
- > In the past ten years, we have developed a variety of waveform sampling front-end chips for pad-type TPC readout, and the latest WASA chip integrates analog front-end, ADC waveform sampling, digital filter, trigger logic and other circuit functions, and based on this chip, we have developed a scalable TPC readout electronics system
- Pixel readout is also one of the current development trends of TPC detector technology, and we have developed a low-power energy and time measurement readout chip TEPIX for pixel TPC readout, which realizes sub-millimeter pixel readout through a high-density interposer substrate

Acknowledgements

- We would like to thank Li Yulan and Feng Hua of Tsinghua University, Li Jin and Qi Huirong of the Institute of High Energy Research, and Zhu Chengguang of Shandong University for their technical exchanges and support in TPC detectors
- Special thanks to the graduate students who completed the chip development and test: Liu Wei, Dong Jianmeng, Liu Canwen (currently studying), Wei Tong (currently studying), Yang Yanxiao (currently studying)

THANKS