

¹ Dipartimento di Fisica "G. Occhialini", Università di Milano – Bicocca, Piazza della Scienza 3, 20125 Milano, Italy
² Istituto per la Scienza e Tecnologia dei Plasmi, Consiglio Nazionale delle Ricerche, Via Cozzi 53, 20126 Milano, Italy
³ Istituto Nazionale di Fisica Nucleare, Sezione di Milano – Bicocca, Piazza della Scienza 3, 20125 Milano, Italy
⁵ Centro Ricerche Fusione (CRF) - University of Padova, Corso Stati Uniti, 4 Padova, Italy

GEM operation in Nitrogen based gas mixtures:

opening new applications for X-Rays, UV-light and

neutron detection with the use of environmental-

friendly mixtures

<u>G. Croci^{1,2,,3,*}</u>, O. Putignano^{1,2}, S. Cancelli¹, F. Caruggi^{1,3}, A. Celora¹, F.

Guiotto^{2,5,6}, E. Perelli Cippo², M. Tardocchi², G. Gorini^{1,3}, G. Grosso², F.

Scioscioli¹, A. Muraro²

⁶ Consorzio RFX, Corso Stati Uniti, 4 Padova, Italy

8th International Conference on Micro Pattern Gaseous Detectors MPGD2024 13-18 October 2024 Hefei, China.

Outline

- Standard Gas used for GEM Operation
- Nitrogen based gas mixtures
 - Properties
- GEM based detectors operated with N₂ based gas mixtures
 - X-Rays
 - Thermal neutrons
 - UV light (an idea)
 - alpha particles

Gas mixtures commonly used with GEM

3

CO₂ and CF₄ mainly used as quenching gas

Gas Properties

Property	CO ₂ (Carbon Dioxide)	CF ₄ (Carbon Tetrafluoride)	N ₂ (Nitrogen)
Molecular Weight	44.01 g/mol	88.00 g/mol	28.01 g/mol
Gaseous Density (g/cm³ at STP)	0.00198 g/cm³	0.00372 g/cm³	0.00125 g/cm³
Polarity	Nonpolar	Nonpolar	Nonpolar
Bond Type	Covalent (O=C=O)	Covalent (tetrahedral)	Covalent (triple bond)
Bond Angle	180° (linear)	109.5° (tetrahedral)	180° (linear)
Ionization Potential (1st)	13.77 eV	16.2 eV	15.58 eV
Ionization Potential (2nd)	21.16 eV	28.9 eV	29.60 eV
Lowest Electronic Energy Level	13.77 eV	~10 eV	14.53 eV
Wi	33 eV	54	35 eV
Excited State	~10.5 eV (for $\pi^* \leftarrow \pi$ transition in UV)	~12.5 eV (Rydberg-like states)	~12.1 eV
Greenhouse Effect	Moderate	High (strong GHG)	Minimal (neutral effect)
Electronic Structure	Linear (sp ² hybridization)	Tetrahedral (sp ³ hybridization)	Triple bond (sp hybridization)

Why is N_2 not commonly used with GEM detectors?

Too slow drift velcity? Other reasons?

 N_2 is extensively used in clean room as «drying gas».

4

(Few) Literature examples of N₂ gas mixtures

2.8 x 10 2.4 ARGON +1% NITROGEN 2.0 c m / \$8C) -VELOCITY 0.8 ARGON + 0.1% NITROGEN 0.4 ARGON 0 0.3 0.5 07 0.8 1.0 0.1 0.2 0.4 0.6 0.9 1.1 1.2 E/p (V/cm+mm Hg)

- 24 -

Fig. 25 Drift velocity of electrons in pure argon, and in argon with small added quantities of nitrogen. The very large effect on the velocity for small additions is apparent²²).

F. Sauli, CERN Yellow Paper 1977

Figure 7: Avalanche size vs anode high voltage for four gas mixtures containing Ar, CH₄, C₂H₆ and N₂. The avalanche size of the SQS mode signals increases as the amount of nitrogen increases. Also, it is much larger in Ar-C₂H₆-N₂ 90:5:5 than in Ar-CH₄-N₂ 90:5:5.

T. Zhao, A study of gas mixtures for ATLAS MDT, Atlas internal note, 1995

Detector Setup used for X-rays and neutrons

- Ar-Co2 mixture 70%-30%
- N2-based mixtures
- · Copper GEM GEM.
- 16 x 16 Pads, 6mm x 6mm
- · GEMINI electronics .

<u>GEMINI</u> Electronics

A compact Readout electronics composed by an Application Specific Integrated Circuit (ASIC) called GEMINI and a custom made FPGA.

Each pixel is read by a single GEMINI channel, making the measure asynchronous, in photon counting

mode. The energy information is retrieved by a **Time over Threshold** technique.

The time binning can be adapted to different event rates, the maximum event rate is 1 MHz per channel.

7

X-Rays Characterization - Setup

8

4.5 keV X-Rays Measurements – Ar/N₂ 90%/10%

4.5 keV X-Rays Measurements – Ar/N₂ 80%/20%

4.5 keV X-Rays Measurements – Ar/N₂ 70%/30%

Comparison with Ar/CO₂ 70%/30%

Gas Mixture	V _{G1} + V _{G2} + V _{G3} Working Range	
Ar/CO ₂ 70%/30%	1010 -1080 V	
Ar/N ₂ 90%/10%	1045–1070 V	
Ar/N ₂ 80%/20%	1130–1170 V	
Ar/N ₂ 70%/30%	1230–1250 V	

Similar behaviuor among Ar/CO₂ 70%/30% and Ar/N₂ 90%/10%

Very promising for closed-recycle gas systems.

Test as Neutron detector: measurements at L.E.N.A. reactor (PAVIA)

- Study of three gas mixture:
 - ArN₂ 90%-10%
 - ArN₂ 80%-20%
 - ArN₂ 70%-30%
- Almost thermal neutrons: large gaussian centred at 25 meV
- Neutrons are detected via nuclear reaction:

 $n + {}^{14}N \rightarrow p + {}^{14}CQ_{val} = 0.626 MeV$

 Similar test performed also by D. Raspino at ISIS using the NitroGEM detector

25 meV neutrons Measurements – Ar/N₂ 70%/30%

25 meV neutrons Measurements – Ar/N₂ 80%/20%

25 meV neutrons Measurements – Ar/N₂ 90%/10%

25 meV neutrons Measurements – Ar/N₂ 70%/30% Using a Cadmium Mask to study gamma sensitivity

2D Beam profiles

ArN₂ 80%-20%

ArN₂ 90%-10%

With Cd Mask

Events

1.00e+03

8.00e+02

- 6.00e+02

4.00e+02

2.00e+02

0.00e+00

Detection efficiency and counting rate as a function of N₂ content

• Preliminary estimation of the detection efficiency

$$-\varepsilon_{GEM} = \frac{cps_{GEM}}{cps_{3He}} * \varepsilon_{3He} \sim 10^{-4} - 10^{-5}$$

Very promising for construction of low material budget thermal neutron beam monitors

(TH)GEM photon preamplifier using pure N₂

• The project behind this R&D: development of a **Cherenkov light** detector for fusion power measurements for tokamak operating in DT

- Over threshold γ efficiency 10⁻³.
- Neutron efficiency 10⁻⁶.
- Efficiency ratio compensates for branching ratio
- Photon pre-amplifier boosts the Cherenkov..

(TH)GEM photon preamplifier using pure $N_2 - Why N_2$?

(TH)GEM photon preamplifier using pure N_2 – Why N2?

Csl/ Nanodiamonds coated (TH)GEM as phtoon preamplifier. THGEM comes from CSNS

DICUCCA

Preliminary test: experimental setup Test of N₂ scintillation signals using PMT

Waveforms of signals recorded by a PMT for two different drift electric fields in pure N2 at 1 Bar, 20 degC

PMT: Hamamatsu R9420-100-10-mod

Test of N₂ scintillation signals: Measurement of e⁻ drift velocity

Proof that we are really detecting N₂ scintillation light! Experimental setup also tested with other gases

Next step: get a CsI or NanoDiamond coated (TH)GEM and measure photocurrent in pure N₂ at different pressures!

Conclusions and Future Perspectives

- Different detectors have been operated using N₂ based gas mixtures
 - Possible development for X-Rays detector using closed-loop gas systems.
 - Most of the purifiers are not sensitive to N₂
 - N₂ GEM detectors based neutron beam monitors can be a solution for low material budget beam monitors for high flux sources (like ESS)
 - N2 can be used as a scinitillation gas for alpha particle detection and (maybe)
 UV-light
 - We are going to test CsI or nanodiamonds coated (TH)GEM using UV generator
 - We are trying to restore the nanodiamond UV photocathode activity (started by INFN Trieste) with ISTP-Bari.
- Maybe we need better description of N₂ cross section (ionization, excitation,...) for correct simulation

Spare Slides

Single GEM measurements

ArN2 70%-30%

ArN2 80%-20%

ArN2 90%-10%

Run 2043: Spectrum for multiple pads and nhit = 1-7

