No v Double-betadecay Experiment

Chengxin Zhao on behalf of NvDEx collabration

Institute of Modern Physics

Chinese Academy of Sciences

chengxin.zhao@impcas.ac.cn

Neutrinos

•Neutrinos oscillate \Rightarrow they have finite mass \Rightarrow beyond Standard Model

 Could be Majorana or Dirac fermions (could be their own anti-particle) •Have "unnaturally" tiny mass 2

Neutrinoless Double Beta Decay (0vββ)

- Unstable nuclei may undergo $\beta\beta$ decay if single β -decay is energetically forbidden
- If $0\nu\beta\beta$ decay is observed, it
 - will prove that v is a Majorana particle \Rightarrow beyond Standard Model
 - may explain the finite but tiny ν masses, by see-saw mechanism with an extended Standard Model
 - will constrain absolute v mass, and v mass hierarchy
 - may explain matter-antimatter asymmetry in the universe, since it violates CP symmetry and lepton number conservation

The experiments

- International experiments such as KamLAND-Zen, NEXT, CUORE, GERDA, are all operating at the hundred-kilogram scale.
- □ Experiments in China: CDEX, PandaX, CUPID-CJPL, NvDEX, and JUNO, etc.

0vββ Experimental Methdology

•The search for 0vββ relies on special isotopes that can potentially exhibit this rare nuclear decay process.

•Build a experiment, measures it, and confirm it.

the total energy of the two electrons is expected to be at the decay Q-value

lsotope	Q _{ββ} (KeV)	Natural abundance (%)	2vββ Half-life (10 ²¹ year)
⁷⁶ Ge→ ⁷⁶ Se	2039	7.8	1.926
¹³⁰ Te→ ¹³⁰ Xe	2528	34.5	0.820
¹³⁶ Xe→ ¹³⁶ Ba	2479	8.9	2.165
⁴⁸ Ca→ ⁴⁸ Ti	4271	0.187	0.064
⁸² Se→ ⁸² Kr	2995	9.2	0.096
⁹⁶ Zr→ ⁹⁶ Mo	3350	2.8	0.024
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3034	9.6	0.007
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3367	5.6	0.009

Trajectory: two energy loss Bragg peaks at the end of the track

Main detector technology of 0vββ

EXC-200

- The high-purity germanium (HPGe) detector (⁷⁶Ge)
 --- Gerda, Majorana, CDEX, LEGEND,.....
- Cryogenic Scintillating Bolometer (Li¹⁰⁰MO、¹³⁰TeO₂)
 --- CUPID-CJPL, CUPID, CUORE, AMORE,.....
 - •Liquid scintillator (¹³⁶Xe, ¹³⁰Te)
 - --- Kamland-Zen, SNO+, JUNO-0vββ,.....
 - Time Projection Chamber (¹³⁶Xe、 ⁸²Se)
 --- nEXO, NEXT、 PandaX, NvDEx,....

Main detector technology of $0\nu\beta\beta$

	Isotope	⁸² Se	⁷⁶ Ge	¹³² Te	¹³⁶ Xe
1	Method	Gas TPC	HPGe	Cryogenic Scintillating Bolometer	Liquid TPC
2	E Resolution	~1%	< 0.5%	< 0.5%	> 2%
3	Q value (MeV)	2.996	2.047	2.528	2.479
4	Scalability	yes	no	no	yes
5	Surface background	no	yes	yes	no
6	Trajectory Measure	yes	no	no	yes

Status of 0vßß experiments

- **□** Current leading experimental sensitivity: half-life sensitivity of 1.1×10^{26} years, and the upper limit for the m_{ββ} is 61-165 meV.
- □ The next generation of ton-scale experiments, cover the inverted hierarchy
- with half-life sensitivity of 10^{27} - 10^{28} years, the upper limit for $m_{\beta\beta}$ of 10-50 meV.

NvDEx - No v Double-beta-decay Experiment

High Pressure TPC with ⁸²SeF₆

- > Se undergoes 0vββ or 2vββ decay
- > Emits two electrons that ionize the gas.
- Forms various SeFn± ions with SeF6 molecules
- Drift towards the readout plane under the influence of an electric field.

- Low noise Readout Plan without amplication
- > Measure the arrvial time of $SeF_{N^{\pm}}$ ions
- Measure the charges of ions

- 0νββ reconstruction
- Two bragg peaks at the end of the track
- Total energy at Q value(2.996MeV)

- High Q value of ⁸²Se (2.996 MeV) above most natural radiation background
- Distinguish signal and background with event topology by TPC
- Low noise CMOS ASIC (45e-) based readoutplane Energy resolution ~1% FWHM@Value without avalanche amplification
- Scalability of TPC to tons level without increasing surface noise
- The first observation of $2\nu\beta\beta$ was made by TPC with Se

四川凉山锦屏山 锦屏二级厂 Lower **Background**

Increse Mass

NvDEx Overall Roadmap

• Runing 100kg scale NvDEx experiments

●1-ton scale NvDEx experimental setup, 5-years

operation, covering the inverted hierarchy.

- Expand the experimental scale without
- increasing additional background, reaching the

normal hierarchy region.

$N_{\rm V}DEx-100$

• NvDEx-100 is being built, with 100kg SeF₆ gas at 10 atm in the sensitive volume

High Pressure Chamber

- Weight ~2 ton
 Length: ~ 3.22 m
 Working volume: ~1.085 m³
 Multiple Connecting Planes
 - DN50: Gas control
 - DN80: High Voltage
 - DN125: Low voltage, Fiber
 - DN150: Vaccum Control

□ working at 10atm, max 15atm

Gas System & Gas Safety

- SeF₆ is poisonous: < 0.05 ppm in environment \Rightarrow multi-layer safety measures
- A cold trap for SeF₆ storing
- An emergency tank for emergent SeF₆ releasing ۲
- After SeF₆ is condensed and the system evacuated, a trace amount of residual gas is put into reactor containing potassium iodide (KI)
- Test with non-poisonous SF₆ for gas tightness before filling SeF₆ each time

condenser

chiller

SF₆ storage tank

Airtight Clean Room

- The entire experimental set-up will be placed in an airtight clean room
- During data taking, the airtight clean room will be kept airtight, and the whole experiment will be controlled remotely
- Sufficient potassium iodide (KI) reagent placed to absorb SeF₆ in case of leakage
- When accessing the experiment, SeF₆ will be condensed in isolated airtight rooms

Readout Plane

- ~15,000 low-noise CMOS ASIC chips (sensor) arranged in a hexagonal pattern
- The focusing plane ensure that all the ionization charges without amplication fall on the charge collection electrode
- Major Design specification of the ASIC
 - > input dynamic range > 40ke-,
 - ➢ equivalent noise charge < 45e-,</p>
 - Integration continuously up to ~1s.

Readout ASIC Option I - Topmetal Sensor

Readout ASIC Option I - Topmetal Sensor

Topmetal-S ID	ENC(e⁻)	Topmetal-S ID	ENC(e⁻)	Topmetal-S ID	ENC(<i>e</i> ⁻)
1	141.526	8	104.058	15	110.072
2	139.486	9	110.927	16	114.208
3	127.576	10	-	17	115.762
4	128.232	11	133.518	18	132.716
5	118.966	12	137.611	19	102.677
6	109.841	13	136.486	-	
7	113.990	14	124.244	-	-

- Readout Plane with 19 Sensor
- The ENC is ~100 to 150 e-

Readout ASIC Option I - Topmetal Sensor

• Built a small scale sysmte for functional verfication

The prototype system, including the TPC field cage, focusing plate, readout plane, and data acquisition system, is working properly.

□ Successful measurement of alpha particle tracks has been achieved.

Readout ASIC Option II - CSA only

ENC : ~ 97 *e* ⁻

Next Step for the ASIC design

• Reduce Noise of the CSA • Implmentation of Continous Integration • Include on-chip DAC

- **D** PMOS input reduce flicker noise.
- Increase the transconductance (gm) of the input transistor.
- □ Change process
- Modify the reset method to eliminate the noise from feedback resistors.

- □ Baseline Hold Circuit
- **D** PDH based baseline feekback adjustment
- □ Self-Reset with controllable duration

The Readout System

- There are around 15 000 charge sensors on the readout plane whose effective area is about 0.5 m²
- Each Module contains 256 Sensor
- Flexible Printed Circuit Board (FPCB) for low background noise
- PCIe based data acquastion card

The Readout System

 Data aggregation modules (DAMs) at the edge aggregate slow parallel data links to fas serial data links

PCIe backend Card

- Kintex Ultrascale+ KU15P FPGA with 24 GTY and 32 GTH high-speed transceivers is utilized
- > 24 optical links up to 28Gbps
- > 16-lane PCIe interface Gen3
- DDR4 slot and two OCuLink connectors

The TPC field Cage

Electrical field ~400V/cm -> Drift velocity of negative ions approximately 20cm/s.

Composed of multiple flexible printed circuit boards (FPCBs)

The cathode is made of low-background oxygen-free copper

2.5cm thick Polyoxymethylene (POM) insulator

Inner Copper Shielding

- Consists of the barrel and the end
- Low-radiation oxygen-free copper
- 12 cm thick, 9 ton weight

External Shielding

- 20 cm thick of Pb to stop γ
- High density polyethylene (HDPE) to stop neutrons
 - between the Pb layer and pressure chamber
 - 30 cm thick outside Pb layer

- Mechnical Supporting
- > The central part is fixed
- > The left and right parts can be open and moved.

Simulation Software

The software is capable of simulating beta decay signals, various backgrounds, and reconstructing the spatial distribution of energy loss, total energy, and other information for each event

- The overall architecture of
 - the detection system

The energy deposition location distribution of 0.7% Energy resolution can $0\nu\beta\beta$ signal events and β background events, be expected as well as the reconstructed charge position distribution

Background suppression with CNN

Convolutional Neural Network (CNN) is employed for signal-background discrimination

- □ Utilizing the distinct geometric characteristics of signals and background events,
- The CNN response value distribution for 0vββ signals and β background events shows a significant difference.
- □ It is possible to reject 98.6% of background events (CL > 90%)

Background Estimations

"100kg-class" experiments:

- Natural radiation γ is the dominant background source for NvDEx
- In total, ~<0.05 counts / year in ROI \Rightarrow ~<1 cts / (ton yr ROI)
- Very good potential for a future multi-ton scale experiment reaching for normal hierarchy $m_{\beta\beta}$ region

Sensitivity Estimation

log(2) * 6.02e23 / 82 * 1.e3 * x / (-log(1-0.9))

- Within 5 years the background in ROI ~< 0.25 counts, basically 0 background
- $T_{1/2} > 4 \times 10^{25}$ yr at 90% CL, with 100 kg natural SeF₆ (only 3.7kg ⁸²Se) 5 yrs
- $T_{1/2} > 4 \times 10^{26}$ yr at 90% CL, with 100 kg 82 SeF₆ 5 yrs

NvDEx Collaboration

- 1st NvDEx workshop in 2019
- >30 collaborators from 9 institutes now