Georges Charpak,

the man beyond science

Ioannis Giomataris, CEA - Saclay

The Nobel Prize in Physics 1992

The Royal Swedish Academy of Sciences awards the 1992 Nobel Prize in Physics to **Georges** Charpak for his invention and development of particle detectors, in particular the multiwire proportional chamber.

Georges Charpak CERN, Geneva, Switzerland

- Born in Dabrowica, Poland on 1924
- Moved from Poland to Paris on 1931
- During 2nd war served in resistance and imprisoned
- On 1944 he was deported to the Nazi concentration camp at Dachau
- On 1955, Phd from the College de France, Paris, under Frederic Joliot-Curie
- On 1985 member of the French Academy of Science
- Nobel Prize for Physics on 1992

His first particle physics experiment The muon anomalous magnetic moment: g-2

Multiwire Proportional Chamber (MWPC)

G. Charpak et al., Nucl.Instrum.Meth.62:262-268,1968 G. Charpak, D. Rahm, H. Steiner, NIM80:13-34,1970 G. Charpak, Ann.Rev.Nucl.Part.Sci.20:195-254,1970

His previous experience at College de France with a cylindrical counter 'was of paramount importance'

The first MPWC

Experiments used MPWC

J- experiment at Brookhaven Discovery of J/psi 1974 Headed by S. Ting

UA1 experiment at CERN Discovery of W and Z, Headed by C. Rubia

ATLAS and CMS at CERN Discovery of Higgs boson 2012

The Ring Imaging Cherenkov Counter (RICH)

J. Seguinot and T. Ypsilantis, Nucl. Instr. and Meth.142 (1977) 377

The imaging chamber

Georges Charpak, W. Dominik, J.P. Fabre, J. Gaudaen, V. Peskov, F. Sauli, M. Suzuki ,A. Breskin, R. Chechik, D. Sauvage, IEEE Trans.Nucl.Sci.35:483-486,1988.Y. Giomataris, A. Gougas, W. Dominik, Georges Charpak, F. Sauli, N. Zaganidis, NIMA279(1989)322

A single electron shower

G. Charpak, Y. Giomataris, A. Gougas, NIM.A343:300,1994.

Solid photocathodes: CsI + gaseous detector J. Seguinot, Georges Charpak, Y. Giomataris, V. Peskov, J. Tischhauser, T. Ypsilantis, NIM.A297:133-147,1990

A. Breskin, Nucl.Instrum.Meth.A371:116-136,1996. F. Piuz et al., Nucl.Instrum.Meth.A433:178-189,1999 D. Anderson, S. Kwan, V. Peskov, B. Hoeneisen, Nucl.Instrum.Meth.A323:626-634,1992

The trigger for Beauty *G. Charpak, I. Giomataris, L.Lederman, NIMA306(1991)439* Developed by Lausanne Uni, Saclay, CERN

The Hadron Blind Detector

I. Giomataris, G. Charpak, NIM A310(1991)589

No windows Large bandwidth CF₄ provides the largest bandwidth Y. Giomataris, G. Charpak, V. Peskov and F. Sauli, Nucl.Instrum.Meth.A323:431,1992

1992 First succesfull test at the SPS - CERN *MIT, CERN, Lausanne, ITEP,* M. Chen et al., NIM A346(1994)120 $N_0 = 500$ measured,,good electron efficiency with a hadron rejection factor of > 30

Main background:

- Ionisation produced in the PPL plate gap 4mm
- Micromegas is an ideal detector gap .1mm

1992 Proof of principle

First succesfull test at the SPS - CERN Collabotion MIT, CERN, Lausanne, ITEP, M. Chen et al., NIM A346(1994)120 $N_0 = 500$ measured,,good electron efficiency with a hadron rejection factor of > 30

HBD concept verified by R.P. Pisani et al., Nucl.Instrum.Meth.A400:243-254,1997

Some new ideas

Neutrino Exploration Of The Earth. A. De Rujula, S.L. Glashow, Robert Rathbun Wilson, Georges Charpak, Phys.Rept.99:341,1983.

Virtue of the small gap

Y. Giomataris, NIM A419, p239 (1998)

Micromegas performance

High radiation resistance : > 30 mC/mm2 > 25 LHC years

G. Puill, et al., IEEE Trans. Nucl. Sci. NS-46 (6) (1999)1894.

A. Delbart, Nucl.Instrum.Meth.A461:84-87,2001

COMPASS: large 40x40 detectors

Micromegas fabrication technologies

Bulk micromegas : pre-stretched steel mesh laminated together with a PCB support and a photoresistive layer, later removed apart where pillars are formed, I. Giomataris et al., NIMA 560 (2006) 405

Micromegas + micro-pixels

micro-Bulk, 50 μm, 25 and 12.5 μm gaps fabricated

Very good energy resolution 11% at 5.9 keV

- Flexible structure (cylinder)
- Low material
- Low radioactivity

Piggy Back: read-out separated from the active volume

MM-bulk first application: T2K

I Micromegas Module

34 x 36 cm² 1726 pixels (10x7 mm²)

3 TPCs \rightarrow 72 modules \rightarrow 9 m²

125000 channels

1700 chips AFTER 400 FEC boards 72 FEM boards

Operational in 2009

A REAL PROPERTY AND A REAL PROPERTY.

First neutrino event

High-Angle TPC (2018-) for ND280 upgrade

ND280 @ JPARC

1st prototype 45x35 cm²

2nd NSW in the pit (4 nov 2021)

!"#\$

Towards Larger Micromegas

ATLAS-MAMMA muon system, Joerg Wotschack, Mod.Phys.Lett. A28 (2013) 1340020 T. Alexopoulos, et al. NIM. A 640, 110-118, (2011).

Small

Wheels 10mØ

Micro-bulk in CAST - high performance

On low radioactivity support

ILC TPC project

Large International collaboration

ILC TPC prototype with Micromegas

ILC TPC with Micromegas

Active participation in 'Paris TPC Conference on rare event detection'

Current Trends in Micro-Pattern Gas Detectors (Technologies)

- Micromegas
- GEM
- Thick Thick-Hole GEM and RETGEM
- MPDG with pixel ASICs
- Ingrid Technology

2009 Kolympari, Crete, Greece 2011 Kobe, Japan 2013 Zaragoza, Spain 2015 Trieste, Italy 2017 Philadelphia, US 2019 La Rochelle, France 2022 Rehovot, Israël 2024 Hefei, China **Radial TPC with spherical proportional counter read-out**

A Novel large-volume Spherical Detector with Proportional Amplification read-out, I. Giomataris *et al.*, JINST 3:P09007,2008

Multiball raed-out structure with DLC layer (from USTC)

NEWS-LSM: Exploration of light dark matter search at LSM Gas targets: Ne, He, CH4 up to 10 bar

NEWS-G at SNOLAB with compact shield

M. M. Arora et al., <u>arXiv:2407.12769</u> [hep-ex]

Georges last visit to our laboratory on 2009

Fast timing PICOSEC Micromegas project CEA-Saclay, CERN, Thessaloniki, Athens, Princeton, USTC, San Diego

Test with UV fs laser @ IRAMIS-CEA

UV Photocathodes on MgF window: CsI, Cr, Al, Diamond, DLC, B4C....

Major result in the SPS CERN beam

- with CsI photocathode
- $\sigma_t \sim 12.5 \text{ ps}$, with single anode (\emptyset =1cm)
- > $\sigma_t < 24 \text{ ps } 10 \times 10 \text{ cm}^2$, prototypes (100 channels)

with robust **B**₄**C** or **DLC** photocathode,

 $\sigma_t \sim 30-35 \text{ ps}$, $10 \times 10 \text{ cm}^2$

Creator of "La Main a la Pâte," Education in primary through science in France an idea first initiated in Chicago by his friend Leon Lederman.

MUN CARPENTIER

Thank you Georges For your unforgettable heritage