

The 8th International Conference on Micro-Pattern Gaseous Detectors

The MPGD2024 conference orogram wi

Web Site: https://mpgd2024.aconf.org

采测与核电子学国家重点实验室

From (very) Basic Ideas to Rather Complex Gaseous Detector Systems Maxim Titov, CEA Saclay, Irfu, France

8th International Conference on Micro-Pattern Gaseous Detectors, University of Science and Technology of China, Hefei, China, Oct, 14-18, 2024

Gaseous Detectors: A Brief History

1968: MWPC – Revolutionising the Way Particle Physics is Done

The progress in experimental particle physics is driven by the advances and breakthrough in instrumentation, leading to the development of new, cutting-edge technologies:

1968: George Charpak developed the MultiWire Proportional Chamber, which revolutionized particle detection and HEP which passed from the manual to the electronic era.

EUROPEAN ORIGATION WIN HOLLEAS RENDARCH 1992: File: Cherrek classes Bouclier, T. Breammi, J. Povier and C. Depundth CHEN, Geneve, Dwitzerland,

Electronic particle track detection is now standard in all particle detectors

Multi-Wire Proportional Chamber (MWPC)

Simple idea to multiply SWPC cell → First electronic device allowing high statistics experiments !!

High-rate MWPC with digital readout: Spatial resolution is limited to s_x ~ s/sqrt(12) ~ 300 μm TWO-DIMENSIONAL MWPC READOUT CATHODE **INDUCED CHARGE (Charpak and Sauli, 1973)**

Spatial resolution determined by: Signal / Noise Ratio Typical (i.e. 'very good') values: S ~ 20000 e: noise ~ 1000e Space resolution < 100 μm

Multi-Wire Proportional Chamber (MWPC): Wire Displacements

Resolution of MWPCs limited by wire spacing better resolution \rightarrow shorter wire spacing \rightarrow more (and more) wires...

Small wire displacements reduce field quality

Table 35.1: Maximum tension T_M and stable unsupported length L_M for tungsten wires with spacing *s*, operated at $V_0 = 5$ kV. No safety factor is included.

Wire diameter (μ m)	T_M (newton)	s (mm)	L_M (cm)
10	0.16	1	25
20	0.65	2	85

- Need high mechanical precision both for geometry and wire tension ... (electrostatic and gravitation, wire sag ...)
- Several simplifying assumptions are made in analytical calculations: electrostatic force acting on the wire does not change during wire movements, or varies linearly with the displacement, the wire shape is parabolic; only one wire moves at a time.

The advantage of numerical integrations using Garfield++ program is to simulate the collective movement of all wires, which are difficult analytically, and to consider all forces acting on a wire: forces between anode wire and other electrodes (wires, cathode) & gravitational force

Drift Chambers

FIRST DRIFT CHAMBER OPERATION (H. WALENTA ~ 1971); HIGH ACCURACY DRIFT CHAMBERS (Charpak-Breskin-Sauli ~ 1973-75)

Choose drift gases with little dependence $v_D(E) \rightarrow$ linear space - time relation r(t)

Measure drift time t_D [need to know t₀; fast scintillator, beam timing]

Determine location of original ionization:

 $x = x_0 \pm v_D \cdot t_D$

 $y = y_0 \pm v_D \cdot t_D$

If drift velocity changes along path: $x = \int_0^{t_D} v_D \, dt$

In any case: Need well-defined drift field ...

The spatial resolution is not limited to the cell size :

Typical single point resolutions of drift chambers: 50...150 µm depends on length of the drift path

- primary ionization statistics: how many ion pairs, ionization fluctuations dominates close to the wire
- diffusion of electrons in gas: dominates for large drift length
- electronics: noise, shaping characteristics constant contribution (drift length independent)

1983/1984: Discovery of W and Z Bosons at UA1/UA2

UA1 used the largest wire / drift chamber of its day (5.8 m long, 2.3 m in diameter)

Discovery of W and Z bosons C. Rubbia & S. Van der Meer,

1984:

 $Z \rightarrow ee$ (white tracks) at UA1/CERN

The Evolution of Drift Chambers and Future e+e- Colliders

publ								
ODEAD	MARK2	Drift Chamber	TRACTOR PLAN	MARK2	Drift Chamber		VEF	
SFEAR	MARK3	Drift Chamber		PEP-4	TPC		V	
DODIS	PLUTO	MWPC	PEP	MAC	Drift Chamber		BI	
DORIS	ARGUS	Drift Chamber		HRS	Drift Chamber			
CESR	CLEO1,2,3	Drift Chamber		DELCO	MWPC		5.	
	CMD-2	Drift Chamber	BEPC	BES1,2	Drift Chamber			
VEPP2/4M	KEDR	Drift Chamber			TPC			
	NSD	Drift Chamber						
	CELLO	MWPC + Drift Ch.	LEP	DELPHI	IPC			
	JADE	Drift Chamber			SI + TEC		c	
PETRA	PLUTO	MWPC						
	MARK-J	TEC + Drift Ch.	SLC	MARNZ	Driit Champer		FC	
	TASSO	MWPC + Drift Ch.		SLD	Drift Chamber			
	ΔΜΥ	Drift Chamber	DAPHNE	KLOE	Drift Chamber		С	
TRISTAN	VENUS	Drift Chamber	PEP2	BaBar	Drift Chamber		S	
	TOPAZ	TPC	KEKB	Belle	Drift Chamber		s	

naci

present

VEPP2000	CMD-3	Drift Chamber
VEPP4	KEDR	Drift Chamber
BEPC2	BES3	Drift Chamber
S.KEKB	Belle2	Drift Chamber

future

	ILD	TPC	
ILC	SiD	Si	
CLIC	CLIC	Si	
FCC-ee	CLD	0:	
		Drift Chamber	
0500	Baseline	TPC Si	
CEPC	IDEA	Drift Chamber	\triangleright
SCTF	BINP	Drift Chamber	
STCF	HIEPA	Drift Chamber	

Lesson #1 - from "open" to "closed" cell

closec Lesson #3 – small cells and He gas closec

the tra . He radiation length 50× longer than Ar · square · slower drift velocity implies smaller Lorenz angle for a given B-field small • He has a smaller cross section for low energy photons than Ar small size cells limit the electron diffusion contribution to spatial resolution ... but small size cells provide high granularity (improving occupancy) and allow for a larger number of hits per track, improving spatial resolution portior envelc ... but small

- portions of active volume not sampled between the cylindrical envelope of use of axial wires and the hyperboloid envelope of stereo wires
- contrit . accumulation of trapped electrons and ions in a region of very low field
- some longitudinal gain variation at boundaries between axial and stereo layers
 - spatial resolution dominated by ionization statistics for short drift distances
 - adding more quencher to compensate, mitigates the advantage of He

Lesson #4 – full stereo configuration

no gar electro

Lesson #5 – summary

- consta
- larger . the configuration offering the best performance in terms of maxim momentum resolution is one with small, single sense wire closed two ste cells, arranged in contiguous layers of opposite sign stereo angles, obtained with constant stereo angle transverse projection ... but
- the gas mixture is based on helium with a small amount of guencher open t^{*} (90% He / 10% iC_4H_{10} , KLOE gas) which, besides low multiple from th scattering contribution, allows for the exploitation of the cluster consta timing technique, for improved spatial resolution, and of the cluster z (radi
- counting technique, for excellent particle identification consta
 - suggested wire material is Ag coated Al, but lighter materials are under scrutiny (like metal coated carbon monofilaments)

An ultra-light drift chamber (IDEA concept) targetted for FCC-ee and CePC (100 km) was inspired by DAFNE KLOE Wire Chamber and by more recent version of it for MEG2 exp.

1974 - Now: Time Projection Chamber (TPC)

PEP4 (SLAC)

ALEPH (CERN)

- Invented by David Nygren (Berkeley) in 1974
- Proposed as a central tracking device for the PEP-4 detector
 @ SLAC in 1976

An ultimate drift chamber design is TPC concept -3D precision tracking with low material budget & PID through differential energy loss dE/dx measurement and/or cluster counting dN_{cl}/dx tech.

- More (and even larger) TPCs were built, based on <u>MWPC readout</u>, a powerful tool for:
 - Lepton Colliders (LEP, Higgs Factories)
 - Modern heavy ion collisions
 - Liquid and high pressure TPCs for neutrino and dark matter searches

	STAD	ALICE	
	STAR	ALICE	
Inner radius (cm)	50	85	32
Outer radius (cm)	200	250	170
Length (cm)	2 * 210	2 * 250	2 * 250
Charge collection	wire	wire	MPGD
Pad size (mm)	2.8 * 11.5	4 * 7.5	2*6
	6.2 * 19.5	6*10(15)	
Total # pads	140000	560000	1200000
Magnetic field [T]	0.5	0.5	4
Gas Mixture	Ar/CH4	Ne/CO2	Ar/CH4/CO2
	(90:10)	(90:10)	(93:5:2)
Drift Field [V/cm]	135	400	230
fotal drift time (μs)	38	88	50
iffusion $\sigma_T(\mu m/\sqrt{cm})$	230	220	70
iffusion σ∟(μm/\/cm)	360	220	300
tesolution in $r\phi(\mu m)$	500-2000	300-2000	70-150
tesolution in r z (μ m)	1000-3000	600-2000	500-800
dE/dx resolution [%]	7	7	['] < 5
racking efficiency[%]	80	95	98

New generation of TPCs use MPGD-based readout: e.g. ALICE Upgrade, T2K, ILC, CepC

Micro-Pattern Gaseous Detectors: Bridging the Gap for Tracking between Wire Chambers and Silicon-based Devices

Pixel System:

Problem:

Advantages of gas detectors:

- low radiation length
- large areas at low price
- flexible geometry
- spatial, energy resolution ...

 rate capability limited by space charge defined by the time of evacuation of positive ions

Solution:

 reduction of the size of the detecting cell (limitation of the length of the ion path) using chemical etching and photo-lithographique techniques developed for microelectronics and keeping at same time similar field shape.

Micro-Strip Gas Chamber (MSGC): An Early MPGD

Multi-Wire Proportional Chamber (MWPC)

Typical distance between wires limited to ~1 mm due to mechanical and electrostatic forces A. Oed, NIMA263 (1988) 351

Micro-Strip Gas Chamber (MSGC)

Excellent spatial resolution

HERA-B Crisis(1998): Aging Effects in High-Rate Gas Detectors

2008: Original Gaseous Detectors in LHC Experiments

	Vertex	Inner Tracker	PID/ photo- detector	EM CALO	HAD CALO	MUON Track	MUON Trigger
ATLAS	-	TRD (straws)	-	-	-	MDT (drift tubes), CSC	RPC, TGC (thin gap chambers)
CMS TOTEM	-	- GEM	-	-	-	Drift tubes, CSC	RPC, CSC
LHCb	-	Straw Tubes	-	-	-	MWPC	MWPC, GEM
ALICE	-	TPC (MWPC)	TOF (MRPC), HPMID (RICH- pad chamber), TRD (MWPC)	-	-	<i>Muon pad chambers</i>	RPC
ALICE: TPC TOF (MRPC Muon tracki trigger (RPC ATLAS: TRD (str	(tracker), TRD (), HMPID (RICH ng (pad chamb 2) aw tubes) MDI	(transition rad.), -pad chamber), er), Muon	Straw tu	bes		CMS CS	C

drift tubes), Muon trigger (RPC, thin gap chambers)

CMS: Muon detector (drift tubes, CSC), RPC (muon trigger)

LHCb: Tracker (straw tubes), Muon detector (MWPC, GEM)

Mostly wires, straws, RPCs

ATLAS MDT: Resolution Limits of High-Rate Wire Chambers

L3 Muon Spectrometer (LEP): ~ 40000 chan. ; σ (chamber) < 200 μm

ATLAS Muon Drift Tubes (LHC):

- ~ 1200 chambers, σ (chamber) ~ 50 μ m
 - 370000 tubes, 740000 end-plugs
 - 12000 CCD for optical alignment

Intrinsic limitation of wire chambers: (resolution degradation at high rates):

1 chamber → 2 layers of 3 drift tubes Spatial resolution /chamber (2 layers of 3 drift tubes)

The Higgs at 10: An Experimental Retrospective

2013 Nobel Prize in Physics for Higgs Boson Discovery

Higgs Candidates @ LHC Muon gaseous detectors: H → ZZ → 4 muons (2 Di-Z Boson candidate events decaying into 4 muons in CMS and ATLAS)

√s = 7 TeV. L = 5.1 fb⁻¹ √s = 8 TeV. L = 5.3 fb⁻¹

Micro-Pattern Gaseous Detector Technologies (MPGD)

- ✓ Gas Electron Multiplier (GEM)
- ✓ Thick-GEM (LEM), Hole-Type & RETGEM
- ✓ MPDG with CMOS pixel ASICs ("GridPix")

GEM

- ✓ Micro-Pixel Chamber (μ –PIC)
- \checkmark *µ*–*Resistive WELL (µ-RWELL)*
- Resistive-Plate WELL (RPWELL)

Rate Capability: MWPC vs GEM:

Gas Electron Multiplier (GEM)

Thin metal-coated polymer foil chemically pierced by a high density of holes

A difference of potentials of ~ 500V is applied between the two GEM electrodes.

 \rightarrow the primary electrons released by the ionizing particle, drift towards the holes where the high electric field triggers the electron multiplication process.

Electrons are collected on patterned readout board.

- ✓ A fast signal can be detected on the lower GEM electrode for triggering or energy discrimination.
- ✓ All readout electrodes are at ground potential.
- Positive ions partially collected on GEM electrodes

Micro Mesh Gaseous Structure (MICROMEGAS)

Micromesh Gaseous Chamber: micromesh supported by 50-100 mm insulating pillars

Small gap: fast collection of ions

50 -100µm

50-100µm

Y. Giomataris, NIMA376 (1996) 29

Pixel Readout of MPGDs: "GridPix" Concept

"InGrid" Concept: By means of advanced wafer processing-technology INTEGRATE MICROMEGAS amplification grid directly on top of TIMEPIX CMOS ASIC

3D Gaseous Pixel Detector → 2D (pixel dimensions) x 1D (drift time)

Other MPGDs Concepts: THGEM, µRWELL, RPWELL

THGEM Manufactured by standard PCB techniques of precise drilling in G-10 (and other materials) and Cu etching

STANDARD GEM

0.1 mm rim to prevent discharges

L. Periale, NIMA478 (2002) 377 LEM!: P. Jeanneret, PhD thesis, 2001

µRWELL and RPWELL

High-rate µRWELL prototypes made by new techniques

https://indico.cem.ch/event/889389/contributions/4020066/attachments/ 2115302/3560690/RD51_collabration_meeting_YouLxpptx

µRWELL with 2D-Strip Readout — For RD51 Tracker

https://indico.cem.ch/event/1040996/contributions/4404219/attachments/ 2266859/3849374/2021-06-18_PD51-Collaboration%20Meeting-ZhouYi-Final.pdf Development of RWELL detectors for large area & high rate applications

https://indico.oern.ch/event/889389/contributions/4020088/attachments/ 2115585/3559626/RD51Collaboration/Meeting-sgf.pdf

Success Story: MPGD Technologies @ CERN Experiments

- The integration of MPGDs in large experiments was not rapid, despite of the first largescale application in COMPASS at SPS in the] 2000's
- Scaling up MPGD detectors, while preserving the typical properties of small prototypes, allowed their use in the LHC upgrades
 - → Many emerged from the R&D studies within the CERN-RD51 Collaboration

Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
COMPASS TRACKING > 2002	Fixed Target Experiment (Tracking)	3-GEM Micromegas w/ GEM preampl.	Total area: 2.6 m^2 Single unit detect: $0.31 \times 0.31 \text{ m}^2$ Total area: ~ 2 m ² Single unit detect: $0.4 \times 0.4 \text{ m}^2$	Max.rate: ~100kHz/mm ² Spatial res.: ~70-100µm (strip), ~120µm (pixel) Time res.: ~ 8 ns Rad. Hard.: 2500 mC/cm ²	Required beam tracking (pixelized central / beam area)
TOTEM TRACKING: > 2009	Hadron Collider / Forward Physics (5.3≤ η ≤ 6.5)	3-GEM (semicircular shape)	Total area: ~ 4 m² Single unit detect: up to 0.03m²	Max.rate:20 kHz/cm ² Spatial res.: ~120µm Time res.: ~ 12 ns Rad. Hard.: ~ mC/cm ²	Operation in pp, pA and AA collisions.
LHCb MUON DETECTOR > 2010	Hadron Collider / B-physics (triggering)	3-GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: ~ 3 ns Rad. Hard.: ~ C/cm ²	Redundant triggering
COMPASS RICH UPGRADE > 2016	Fixed Target Experiment (RICH - detection of single VUV photons)	Hybrid (THGEM + Csl and MM)	Total area: ~ 1.4 m ² Single unit detect: ~ 0.6 x 0.6 m ²	Max.rate:100 Hz/cm ² Spatial res.: <~ 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality
ATLAS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	Resistive Micromegas	Total area: 1200 m^2 Single unit detect: $(2.2x1.4m^2) \sim 2-3 \text{ m}^2$	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: ~ 10 ns Rad. Hard.: ~ 0.5C/cm ²	Redundant tracking and triggering; Challenging constr. in mechanical precision
CMS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	3-GEM	Total area: ~ 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100µm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	Redundant tracking and triggering
ALICE TPC UPGRADE CERN LS2	Heavy-Ion Physics (Tracking + dE/dx)	4-GEM / TPC	Total area: ~ 32 m² Single unit detect: up to 0.3m²	Max.rate:100 kHz/cm ² Spatial res.: ~300µm Time res.: ~ 100 ns dE/dx: 11 % Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution

2030

Legacy of the CERN-RD51 Collaboration: 2008-2023

RD51 CERN-based <u>"TECHNOLOGY - DRIVEN R&D COLLABORATION"</u> was established to advance MPGD concepts and associated electronics readout systems

- ✓ Many of the MPGD Technologies were introduced before the RD51 was founded
- ✓ With more techniques becoming available, new detection concepts were introduced and the existing ones were substantially improved during the RD51 period (2008-2023)
- Beyond 2023, RD51 served as a nuclei for the new DRD1 ("all gas detectors") collaboration, anchored at CERN, as part of the ECFA Detector R&D Roadmap

Legacy of the CERN-RD51 Collaboration:"RD51" Model

The success of the RD51 is related to the "RD51 model" inperforming R&D: combination of generic and focused R&D with bottom-up decision processes, full sharing of experience, "know-how", and common infrastructure, which allows to build community with continuity and institutional memory and enhances the training of younger generation instrumentalists.

(InGrid). Using thi

Scientific organisation in 7 working groups

- WG1: New structures and technologies
- WG2: Detector physics and performance •
- WG3: Training and dissemination ٠
- WG4: Software & Simulation Tools ٠
- WG5: Readout Electronics (RD51 SRS) •
- WG6: MPGD Production & Industrialization ٠
- WG7: Common test facilities

CERN Courier (5 pages) Volume, October 2015 RD51 and the rise of micro-pattern gas detectors

ince its foundation, the RD51 collaboration has provided important stimulus for the

Community and Expertize (RD51 Scientific Network)

3 MAJOR ASSETS

RD51:

MPGD Technology Development & Dissemination

R&D Tools, Facilities and Infrastructure

2022: MPGDs for High Luminosity LHC Upgrades

The <u>successful implementation of MPGDs for relevant upgrades of CERN</u> experiments indicates the degree of maturity of given detector technologies for constructing large-size detectors, the level of dissemination within the HEP community and their reliability

ATLAS NSW MicroMegas

https://ep-news.web.cern.ch/content/atlasnew-small-wheel-upgrade-advances-0

https://ep-news.web.cern.ch/upgraded-alice-tpc

CMS GEM muon endcaps

https://ep-news.web.cern.ch/content/demonstratingcapabilities-new-gem

Large-Area MM / GEM Detectors for ATLAS / CMS Upgrade

Resistive MM for ATLAS NSW Muon Upgrade:

Standard Bulk MM suffers from limited efficiency at high rates due to discharges induced dead time Solution: Resistive Micromegas technology.

- Add a layer of resistive strips above the readout strips
- Spark neutralization/suppression (sparks still occur, but become inoffensive)

Resistive Strip

Embedded resistor 15–45 MΩ 5mm long

Still, main issue encountered: HV unstability

==> found to be correlated to low resistance of resistive strip anode ==> applied solutions + passivation in order to deactivate the region where R<0.8 M Ω

Production, sector integration (~1200m² resistive MM):

GEMs for CMS Muon System Upgrade:

- Single-mask GEM technology (instead of double-mask)
 - → Reduces cost /allows production of large-area GEM

Assembly optimization: self-stretching technique: → assembly time reduction to 1 day

September 2020: 144 GEM chambers installed

Gaseous Detectors: From Wire/Drift Chamber \rightarrow Time Projection Chamber (TPC) \rightarrow Micro-Pattern Gas Detectors

Primary choice for large-area coverage with low material-budget (+ dE/dx measurement)

1990's: Industrial advances in photolithography has favoured the invention of novel microstructured gas amplification devices (MSGC, GEM, Micromegas, ...)

Examples of Gaseous Detectors for Future Colliders:

HL-LHC Upgrades: Tracking (ALICE TPC/MPGD); Muon Systems: RPC, CSC, MDT, TGC, GEM, Micromegas; Future Hadron Colliders: FCC-hh Muon System (MPGD - OK, rates are comparable with HL-LHC) Future Lepton Colliders: Tracking (FCC-ee / CepC - Drift Chambers; ILC / CePC - TPC with MPGD readout) Calorimetry (ILC, CepC – RPC or MPGD), Muon Systems (OK)

Future Election-Ion Collider: Tracking (GEM, µWELL; TPC/MPGD), RICH (THGEM), TRD (GEM)

Gaseous Detector R&D: Common Issues

Despite the different R&D requirements, there is potential for overlapping in many aspects, allowing for a larger community of gaseous detectors to benefit. The most straightforward example is the classic ageing issues, but many others can be mentioned:

- MPGD- the main challenges remain large areas, high rates, precise timing capabilities, and stable discharge-free operation, picosecond-timing, optical readout
- RPC focus stays on improving high-rate and precise timing capabilities, uniform detector response, and mechanical compactness, pico-second timing
- Straw tubes- requirements include extended length and smaller diameter, low material budget, and operation in a highly challenging radiation environment.
- Large-volume Drift chamber with a reduced material budget in a high-rate environment requires searching for new materials. Avalanche-induced Ion Back Flow (IBF) remains the primary challenge for TPC applications in future facilities.

Resistive MPGD Structures: Performance & Trends

SINGLE-STAGE DESIGNS with RESISTIVE MATERIALS and related detector architecture \rightarrow µPIC, µRWELL, small-pad res. MM (proposed for ATLAS HL-LHC Forward Muon Tagger), RPWELL \rightarrow improves detector stability; single-stage is advantage for assembly, mass production & cost

Diamond-like carbon (DLC) resistive layers :

- \rightarrow Solutions to improve high-rate capability (\geq MHz)
- \rightarrow Spark Protection
- → Resistive Spreading
- \rightarrow Possibillity to make capacitive sharing

Future R&D Challenges:

Radiation-induced modification of surface resistivity after the very high radiation dose

"STD kit'

High-rate detectors 10Mhz/cm2 Medium-rate detectors 100kHz/cm2 Side evacuation of the charges Charge evacuation inside active area Resistive Strip 0.5–5 MQ/cm 2013 2015 2 layers with screen printed pads Screen printed resistive strips (ATLAS NSW) or or 2015 2020 1 full DLC layer 2 DLC layers without patterns

 $2013 \rightarrow \text{Resistive layer applied to MM structures}$

µRWELL High-Rate Layout O(Mhz/cm2) for LHCb Upgrade & Medium-Rate Layout for FCC-ee / CePC

Towards Large Area in Fast Timing GASEOUS DETECTORS

Gaseous Detectors: Micromegas with Timing (RD51 Picosec Collaboration)

Your opportunity for MPGD R&D at the USTC:

Large area 4D Picosecond-timing tracker for high-rate experiments:

Optical Readout of MPGDs: Imaging Applications

Optical readout of gaseous detectors

Scintillation light emission Imaging sensors and optics Applications of optical readout

Radiation imaging and fluorescence High spatial resolution imaging Optical TPCs Neutron imaging Beam monitoring and medical applications Optical readout for detector R&D New developments

Alternative gases and wavelength shifters Ultra-fast imaging SiPM readout Optical readout of negative ion drift detectors

CT and 3 D Imaging:

Steps Towards Long-Term Detector R&D Program

Main target projects of Gaseous Detector R&D

> 2024: New DRD Collaborations @ CERN

- DRD Reports at open session of DRDC meetings https://indico.cern.ch/event/1356910/
- Indico Category: "Experiments / R&D": https://indico.cern.ch/category/6805/
- Full DRD proposals in CERN CDS:

https://cds.cern.ch/search?cc=DRDC+Public+Documents&sc=1&p=594__%3A%22Proposal%22

DRDC Committee: https://committees.web.cern.ch/drdc (Chair – T. Bergauer HEPHY, Vienna)

- Proposals contain "strategic" and "blue-sky" R&Ds, definition of Working Groups, Work Packages, milestones, tasks & deliverables
- Strategic funding to be agreed with funding agencies/ institutions via Work Packages
- Next step is to prepare and sign DRD MoUs
- Progress tracked by annual DRDC review
 next meeting on Nov. 13, 2024: https://indico.cern.ch/event/1424898/

DRD1 Collaboration Example: Gaseous Detectors

- Large community of 161 institutes, 700 members, 33 countries based on previous RD51 collaboration
- R&D Framework organized based on:
 - Working Groups (RD51 Legacy): serving as the backbone of R&D, distributed R&D Activities with Centralized Facilities
 - Work Packages: will reflect the DRDTs → Strategic R&D and Long -Term Funding (Funding Agency Model)
 - Common Projects: "blue sky" R&D (e.g. PICOSEC started as common project)

Countries of DRD1 Institutes (today)

Dissemination of MPGD Applications in HEP & Beyond

Cylindrical MPGDs as Inner Trackers for <u>Particle / Nuclear Physics</u>							
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks		
KLOE-2 @ DAFNE Run: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical GEM	Total area: 3.5m ² 4 cylindrical layers L(length) = 700mm R (radius) = 130, 155, 180, 205 mm	Spatial res:(r phi) = 250um Spat. res.(z) = 350um	- Mat. budget 2% X0 - Operation in 0.5 T		
BESIII Upgrade @ Beijing Run: 2018-2022	Partcile Physics/ e+e- collider (Tracking)	Cylindrical GEM	3 cylindrical layers R - 20 cm	Max. rate: 10 kHz/cm ² Spatial res:(xy) = 130um Spat. res.(z) = 1 mm	 Material ≤ 1.5% of X₀ for all layers Operation in 1T 		
CLAS12 @JLAB Start: > 2017	Nuclear Physics/ Nucleon structure (tracking)	Planar (forward) & Cylindrical (barrel) Micromegas	Total area: Forward ~ 0.6 m ² Barrel ~ 3.7 m ² 2 cylindrical layers R ~ 20 cm	Max. rate: - 30 MHz Spatial res.: < 200µm Time res.: - 20 ns	- Low material budget : 0.4 % X0 - Remote electronics		
ASACUSA @ CERN Run: 2014 - now	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip annihilation	Cylindrical Micromegas 2D	2 cylindrical layers L = 60 cm R = 85, 95 mm	Max. trigger rate: kHz Spatial res.: ~200µm Time res.: ~10 ns Rad, Hard.: 1 C/cm ²	- Large magnetic field that varies from -3 to 4T in the active area		
MINOS Run: 2014-2016	Nuclear structure	TPC w/ cylindrical Micromegas	1 cylindrical layer L=30 cm, R = 10cm	Spatial res.: <5 mm FWHM Trigger rate up to >1 KHz	- Low material budget		
CMD-3 Upgrade @ BINP Start: > -2019?	Particle physics (z-chamber, tracking)	Cylindrical GEM	Total arear: ~ 3m ² 2 cylindrical layers	Spatial res.: ~100µm			
	, i Ei						

Technologies for X-Ray Detection and y-Ray Polarimetr

modulesize Performance

GEMPIX Total area: 10-20 cm² Spat. res.: ~50x50 µm^2

Astrophysics TPC w/ Total area: 400 cm³ Max.rate: ~1 lcps Reliability for space

Gamma-ray GEM (1 cubic TPC module) Spatial res.: < 500 um for balloon &

Single unit detect. (8 x Time res.: ~ few ns

Operation

characteristics/

2 ms frames: 500 frames/sec

1 ms frames;5 frames/sec

Spatial res.: ~ 100 um

Rad. Hard .: 1000 krad

Point Spread Function for

Point Spread Function for

gamma-ray: 1"

gamma-ray: 1*

Time res.: ~ 30 ns samp. self triggered

Special

Remarks

mission under

severe thermal and

vibration conditions

AGET development

Requirements

Total detector

Technology | size / Single

Xray Plasma Monitor GEM Total area: 100 cm² Spat. res.: ~ 8x8 mm⁴2

50cm³)~400cm³

Future: 4x4x4=

30 x 30 x 30 cm³

10x10x10 cm3

64 HARPO size mod.

Astroparticle physics Micromegas + Total area: 30x30cm2 Max.rate: ~20 kHz

Application

for Tokamak

(X-ray polarimeter for GEM

Astro Physics GEM+µPIC Total area:

(TPC+

Scintillators)

GEM+µPIC Total area:

relativistic

polarimetry

(Tracking/Triggering)

(Gamma-ray imaging)

Environmental

gamma-ray monitoring (TPC+

(Gamma-ray imaging) Scintillator

Domain

Experiment

KSTAR @ Korea

Start: 2013

PRAXES

Future Satellite

Mission (US-Japan):

Balloon start >2017?

SMILE-II:

Run: 2013-now

ETCC camera

Run: 2012-2014

HARPO

Start 2020 - for 2vears astrophysical X-rays

Timescale

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks			
COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VUV photons)	Hybrid (THGEM+CsI and MM)	Total area: - 1.4 m ² Single unit detect: - 0.6 x 0.6 m ²	Max.rate:100Hz/cm ² Spatial res.: <- 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality			
PHENIX HBD Run: 2009-2010	Nuclear Physics (RICH - e/h separation)	GEM+CsI detectors	Total area: ~ 1.2 m ² Single unit detect: ~ 0.3 x 0.3 m ²	Max. rate: low Spatial res.: ~ 5 mm (rø) Single el. eff.: ~ 90 %	Single el. eff. depends from hadron rejection factor			
SPHENIX Run: 2021-2023	Heavy Ions Physics (tracking)	TPC w/GEM readout	Total area: ~ 3 m ²	Multiplicity: dNch/dy - 600 Spatial res.: - 100 um (rø)	Runs with Heavy Ions and comparison to pp operation			
Electron-Ion Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout + Cherenkov	Total area: ~ 3 m ²	Spatial res.: ~ 100 um (rø) Luminosity (e-p): 10 ³³	Low material budget			
		RICH with GEM readout	Total area: ~ 10 m ²	Spatial res.: ~ few mm	High single electron efficiency			

MPGD Technologies for Dark Matter Detection

HBD Concep

Run: 2008-now

Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
DARWIN (multi-ton dual-phase LXe TPC) Start: >2020s	Dark Matter Detection	THGEM-based GPMT	Total area: ~30m ² Single unit detect. ~20 x20 cm ²	Max.rate: 100Hz/cm ² Spatial res.: ~ 1cm Time res.: ~ few ns Rad. Hard.: no	Operation at ~180K, radiopure materials, dark count rate ~1 Hz/cm ²
PANDAX III @ China Start: > 2017 N	Astroparticle physics Neutrinoless double beta decay	TPC w/ Micromegas µbulk	Total area: 1.5 m ²	Energy Res.: ~ 1-3% @ 2 MeV Spatial res.: - 1 mm	High radiopurity High-pressure (10b Xe)
NEWAGE@ Kamioka Run: 2004-now	Dark Matter Detection	TPC w/ GEM+µPIC	Single unit det. ~ 30x30x41(cm ³)	Angular resolution: 40° @ 50keV	
CAST @ CERN: Run: 2002-now	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk and InGrid (coupled to X- ray focusing device)	Total area: 3 MM μbulks of 7x 7cm ² Total area: 1 InGrid of 2cm ²	Spatial res.: -100µm Energy Res: 14% (FWHM) € 6keV Low bkg. levels (2-7 keV): µMM: 10-6 cts >-1 keV-1 cm-2 InGrid: 10-5 cts s-1 keV-1 cm-2	High radiopurity, good separation of tracklike bkg. from X-rays
IAXO Start: > 2023?	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk, CCD, InGrid (+X- ray focusing device)	Total area: 8 μbulks of 7 x 7cm2	Energy Res: 12% (FWHM) @ 6keV Low bkg. Levels (1-7 keV): µbulk: 10-7ctss-1keV-1cm-2	High radiopurity, good separation of tracklike bkg, from X-rays

MPGD-based Neutron Detectors MPGD-based Neutron Detectors MPGD-based Neutron Detectors MPGD coupled to n-converters: MPGD coupled to n-converters: MPG							
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size)	Operation Characteristics / Performance	Special Requirements / Remarks		
ESS NMX: Neutron Macromolecular Crystallography Start: > 2020(for 10 y.)	Neutron scattering Macromolecular Crystallography	GEM w/ Gd converter	Total area: - 1 m² Single unit detect: 60x60 cm²	Max.rate: 100 kHz/mm ² Spatial res.: -500µm Time res.: -10 us neff: - 20% efficient - γ rejection of 100	Localise the secondary particle from neutron conversion in Gd with < 500um precision		
ESS LOKI- SANS: Small Angle Neutron Scattering (Low Q) Start: > 2020(for 10 y.)	Neutron scattering: Small Angle	GEM w/ borated cathode	Total area: - 1 m ² Single unit detect: 33x40 cm ² trapezoid	$\begin{array}{l} \text{Max.rate: } 40 \text{kHz/mm}^2 \\ \text{Spatial res.: } -4 \text{mm} \\ \text{Time res.: } -100 \text{us} \\ \text{n. } -\text{eff. } > 60\% (at \lambda = 4 \text{\AA}) \\ -\gamma \text{ rejection of } 10^{\circ}\text{-}7 \end{array}$	Measure TOF of neutron interaction in a 3D borated cathode		
SPIDER: ITER NBI PROTOTYPE Start: ~ 2017(for 10 y.)	CNESM diagnostic: Characterization of neutral deuterium beam for ITER plasma heating using neutron emission	GEMs w/ Al-converter (Directionality - angular) capability)	Single unit detect: 20x35 cm²	Max.rate: 100 kHz/mm ² Spatial res.: - 10 mm Time res.: - 10 ms neff: >10^-5 y rejection of 10^-7	Measurement of the n- emission intensity and composition to correct deuterium beam parameters		
n_TOF beam monitoring/ beam profiler	Neutron Beam Monitors	MicroMegas µbulk and GEM w/	Total area: ~ 100cm ²	Max.rate:10kHz Spatial res.: :: ~300µm Time res.: - 5 ns Rad. Hard :: no			

MPGD Technologies for Neutrino Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
T2K @ Japan Start: 2009 - now	Neutrino physics (Tracking)	TPC w/ Micromegas	Total area: - 9 m ² Single unit detect: 0.36x0.34m ² -0.1m ²	Spatial res.: 0.6 mm dE/dx: 7.8% (MIP) Rad. Hard.: no Moment. res.:9% at 1 GeV	The first large TPC using MPGD
SHiP@CERN Start: 2025-2035	Tau Neutrino Physics (Tracking)	Micromegas, GEM, mRWELL	Total area: $\sim 26 \text{ m}^2$ Single unit detect: $2 \times 1 \text{ m}^2 \sim 2\text{m}^2$	Max. rate: < low Spatial res.: < 150 µm Rad. Hard.: no	Provide time stamp of the neutrino interaction in brick"
LBNO-DEMO (WA105@CERN): Start:>2016	Neutrino physics (Tracking+ Calorimetry)	LAr TPC w/ THGEM double phase readout	Total area: 3 m² (WA105-3x1x1) 36 m² (WA105-6x6x6) Single unit detect. (0.5x0.5 m2) -0.25 m²	WA1053x1x1 and 6x6x6: Max. rate: 150 Hz/m ² Spatial res.: 1 mm Time res.: - 10 ns Rad. Hard.: no	Detector is above ground (max. rate is determined by muon flux for calibration)
DUNE Dual Phase Far Detector Start: > 2023?		LAr TPC w/ THGEM double phase readout	Total area: 720 m ² Single unit detect. (0.5x0.5 m2) ~ 0.25 m ²	Max. rate: 4*10 ⁷ Hz/m ² Spatial res.: 1 mm Rad. Hard.: no	Detector is underground (rate is neutrino flux)
		Topi tabute	Hidan Sector dicay volume Sector Part	a o	

https://indico.cern.ch/event/581417/contributions/2558346/attachments/1465881/2266161/2017_05_Philadelphia _MPGD2017-ConferenceSummary_25052017_MS.pdf

MPGD R&D @ USTC: Technology Advances

Large-area MPGD production

Gaseous detector features large-area, low-mass and cost-effective solution for particle detection, MPGD further enhances its high rate capability and

spatial/temporal resolution for future particle and nuclear physics facilities.

Produced by self-stretching method

Adding resistive layer is essential to ensure stable operation of gaseous detector by effectively quenching the streamer/spark. New candidates, especially Diamond-Like Carbon (DLC), is very promising in developing many kinds of MPGDs.

Cu layer Cr-Cu interlaye

Resistive-layer coating

Goal of this project:

- 1. Define a stable and well controlled DLC and DLC+Cu processing method for the production of MPGD electrodes
- 2. Studying the long-term stability under irradiation of DLC and DLCbased detectors.

Novel MPGD structure - uRGroove

uRGroove

Y Resi X EN Y EW Beam test Planar uRGroove 400 HV on uRGroom and Res Beam test cylindric uRGroove 630 640 650 HV on uRGroove

Low ion backflow is preferred in applications involving high-rate and/or aging requirements. E.g., to suppress strong space-charge effect in TPC, or to improve life time for gaseous photomultiplier (GPM).

Low ion backflow (IBF)

DMM : Double Micro-Mesh gaseous structure

5 × 10⁶ gain for single (IBF ratio: down to 3×1

TMM : Triple Micro-Mesh gaseous structure

Similar to uRWELL, uRGroove provides compact and low-mass solution for large-area trackers. The intrinsic 2D structure is beneficial for higher signal gain and readout.

uRGroove is the optimal candidate for gaseous inner tracker at the Super Tau-Charm Facility (STCF).

MPGD R&D @ USTC: Examples of Applications

Thermal bonding Micromegas for PandaX-III TPC, MIMAC, MeGaT

Jinping Deep Underground Dark Matter Laboratory

- High-pressure ¹³⁶Xe TPC
- Background suppression
- σ_F<3%@2.5MeV
- Ultra-low radiation level

techniques Precision measurements of

neutrino cross-section

High-pressure TPC+CZT

- High resolution
- High sensitivity
- \blacksquare γ polarization measurements

Medical Pencil Scanning **Proton Beam monitoring**

>10⁹ Hz/cm² proton Direct readout (camera) 30×40 cm² sensitive area Resolution <400 um</p>

Micromegas-based neutron beam monitor for BNCT

- $\sim \Phi 12$ cm beam size
- High rate >1 MHz/cm²
- Discrimination of thermal/fast neutron and γ

transmission imaging facility \blacksquare Sensitive area $\stackrel{\sim}{}$ m² ker Spatial resolution ~100um Normality. ■ Efficiency >95% /layer ■ Angular resolution <1

μSTC: μ scattering tomography and

mrad Ultra-low background α/β Counter and α Spectroscopy

- Multi-dimensional information
- Ultra-low background
- Environmental α , β , γ discrimination
- Light-weighted

Development of radiation measurements and imaging facilities with novel detectors

Cutting Edge Science Relies on Cutting Edge Instrumentation

The detrimental effect of the material budget and power consumption represents a very serious concern for a high-precision Si-vertex & tracking;

CMOS sensors offers low mass and (potentially) radiation-hard technology for future colliders;

<u>MPGDs</u> have become a well-established technique in the fertile field of gaseous detectors;

- Several novel concepts of picosecond-timing detectors (LGAD, LAPPD) will have numerous powerful applications in PID & pile-up rejection:
- The story of modern calorimetry is a textbook example of physics research driving the development of an experimental method (PFA);
- The integration of advanced electronics and data transmission functionalities plays an increasingly important role and needs to be addressed;
- Bringing the modern algorithmic advances from the field of machine learning from offline applications to online operations and trigger systems is another major challenge;

 Our instrumentation represents both a towering achievement, and, in some cases, a scaled-up version of techniques used in the past. Recent discoveries of the Higgs boson and Gravitational Waves required increasingly sophisticated detectors and have created an exceptionally positive environment in society.

3

1 2 1 1

2

2) Key importance to keep an eye on new technologies, based on industry trends;

 Encourage young scientists to do detector R&D; importance of recognition of excellence in instrumentation in careers at universities / RI;

BACK-UP SLIDES

Aging Effects in Gas Detectors: "Non-Local" Phenomena

PARTICLE TYPE & ENERGY; IRRADIATION AREA

IRRADIATION AREA 0 3460 Yolt / 3.5 kHz/cm 4 3505 Yolt / 0.35 kHz/cm 0 3460 Yolt / 1.25 kHz/cm 0 3505 Yolt / 0.25 kHz/cm 0 3505 Yolt / 0.25 kHz/cm 0 3505 Yolt / 1.25 kHz/cm 0 3440 Yolt / 1.8 kHz/cm 10² 10² 10³ Collimator aperture in mm

IRRADIATION RATE

ATLAS MDT - Ar/CH₄/N₂/CO₂ (94:3:2:1): Most likely polymerization of hydrocarbons (no indication that contamination caused aging

AGING RATE DEPENDS:

M. Kollefrath, ATLAS MDT: ATLAS MUON-NOTE-012 (2001)

CLEAR EVIDENCE THAT AGING RATE DEPENDS ON:

- Irradiation rate
- Ionization density
- High voltage (gas gain)
- Particle type & energy
- Gas exchange rate

GAS FLOW & IRRADIATION AREA

X-rays or e⁻ can not trigger Malter effect independently of their energy or radiation intensity

B Tracker:							
			Radiation Density	Irradiation area	Gas Mixture	Effect seen?	
D	. 155 (2	003)).3 μA/cm	~9x9 cm ²	Ar/CF ₄ /CH ₄	NO	
	α-part, 28 MeV/c).6 µA/cm	~1x3 cm ²	Ar/CF ₄ /CH ₄	NO	
	PSI p 70 MeV/c	~ mC/cm	0.2 μA/cm	~0.5x0.5 cm ²	Ar/CF ₄ /CH ₄	NO YES	
	PSI π/p 350 MeV/c	~ mC/cm	0.02 µA/cm	~12x22 cm ²	CF_4/CH_4	YES	
	Karlsruhe α-part, 100 MeV/c	~ mC/cm	0.02 µA/cm	~7x7 cm ²	Ar/CF ₄ /CH ₄	YES	
	HERA-B P(920 GeV)-N	~ mC/cm	0.03 µA/cm	100x30 cm ²	All gas mixures	YES	

Hadrons above certain energy produce Malter effect at ~mC/cm as in HERA-B (Irradiation area above certain limit is necessary for ignition of Malter effect)

HERA-B Muon: NIMA515, p. 202 (2003)

