

We are looking on the signal path from the generation to the FE ASIC

We consider the Gas amplification and induction current mechanisms well described

Finite elements?

In software like Ansys HFSS A full model of the path could be created but it is very computation expensive, and licence bonded

We have priori a knowledge the Of detector structure, but how to implement it into the propagation signal simulation?

-50um Kapton	
X DLC laver	
-pillars 150um	
X mesh: 45/18	
Drift gap : 5mm	
Drift mesh : 45/18	
Drift gap: 5mm	
U.V mesh: 45/18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-pillars 150um	
U.V DLC layer	
-50um Kapton	
-50um Prepreg	
U layer: 35um Copper	
-28um Prepreg	
V Laver: 17um copper	
-3.2mm glass epoxy	
U.V bottom shielding and connector la	aver: 35um copper

ielding and connector layer : 35um coppe

-3.2mm Glass epoxy

X strip layer : 35um Coppe

design properly Ο the readout ASIC a description of the path and effective signal deteriorations look useful

We could simulate small elements of the path and try to merge the results into a simulation model (Cascade models)?

Can we extract it from a real detector?

Single channel response simulation

with 25ns and 250ns peaking times

The FE board should be taken into account

Signal path description in terms of S-parameters needs to take into account all possible discontinuities such as vias or connectors. We can TDR instruments to use

we could go for a simplified test?

Our way

Element PCBs sim VS reality

Segment PCBs sim VS reality

USTC HEFE

The 8th International Conference on Micro-Pattern Gaseous Detectors Oct.14th - Oct.18th 2024 USTC·Hefei, China

