

Performance study of 400 \times **400 mm² and 600** \times **600 mm² Micromegas track detectors using cosmic rays**

Yulin Liu^{1, 2}, Zhiyong Zhang^{1, 2}, Jianbei Liu^{1, 2}, Yu Wang^{1, 2}

- Fig. 6 displays the amplitude distribution of hits, with the horizontal axis already converted to collected charge based on the electronics characteristics.
- In Fig. 7, the scan results on detector efficiency indicate that for both x and y dimensions, an efficiency exceeding 95% is achieved when the mesh voltage is greater than 560V.
- Residual distributions of 400 \times 400 mm² and 600 \times 600 mm² detectors

Fig. 1. (a) Schematic of the 400×400 mm² detector structure. (b) Schematic of the 600×600 mm² back-to-back detector structure.

Fig. 2. Photo of 400×400 mm² detector on the left and 600×600 mm² detector on the right.

1. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China

2. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

5. Performance of Micromegas

The scan results on detector resolution are shown in Fig. 10, including charge center method, μTPC method and weighted average results.

Using the cosmic ray platform, a new alignment algorithm for plate detectors based on Millepede-II [4] has been developed. The algorithm reconstructs particle trajectories using all detectors, calculates the intersection point p_q on the corrected detector plane, and converts it to detector local coordinates p_l based on alignment parameters. The goal is to minimize the residual between p_l and the actual hit point p_r .

are shown in Fig. 8 and 9, fitted with double Gaussian distributions. Due to platform size limitations, only 4 track detectors are used in the 600×600 mm² detector testing, resulting in a wider residual distribution due to errors in the reference trajectory.

4. Alignment algorithm

Fig. 8. Residual distributions of x/y dimensions of 400×400 mm² detectors.

Fig. 10. Variation of charge center method, μTPC method and weighted average result with incident angle.

residual of x (mm)

residual of y (mm)

The usual matrix rotation form has been replaced by the quaternion rotation form, as shown in Fig. 4, effectively addressing the convergence issues in traditional x/y rotation alignment algorithms. The comparison results of the two alignment algorithms are shown in Fig. 5, using simulation data generated by geant4.

Abstract: The large area and high spatial resolution of particle detection are important aspects in the research and application of MPGD. Currently, there is no satisfactory technological solution to address these challeng in achieving long-term stable, high-resolution readout of large area detectors, and managing high irradiation background and counter rates. In this study, we utilized the thermal bonding method for manufacturing Micromegas and conducted production and research on large area Micromegas detectors ranging from 400×400 mm² to 600×600 mm² in size. Several large area Micromegas detectors have been successfully developed, and a cosmic system has been established. Using this system, we developed an alignment algorithm and investigated the position resolution, detection efficiency through performance testing, and µTPC reconstruction. A new alignment algor plate detectors based on Millepede-II was developed using this system, effectively addressing the convergence issue of traditional algorithms in the rotation alignment of the x/y direction. The results of the cosmic ray te that the detection efficiency of the 400 \times 400 mm² thermal bonding Micromegas detector exceeds 95%, with a position resolution of approximately 130 µm. The position resolution of µTPC reconstruction is approximately particles with incident angles greater than 20 degrees. This paper covers the manufacturing of large area Micromegas detectors, cosmic ray testing, and data analysis methods.

> Fig. 4. The alignment algorithm equations in matrix and quaternion rotation forms.

Fig. 5. The comparison results of matrix and quaternion algorithms.

Fig. 7. Variation of detector efficiency with voltage of mesh.

Fig. 6. Distribution of the amplitude of hits.

Fig. 1 (a) shows the schematic of 400×400 mm² detectors. The 600×600 mm² detectors adopt a back-to-back structure design, as shown in Fig. 1 (b).

The TBM process is selected to manufacture the avalanche gap of the Micromegas detector. With the installation of the drift electrode, gas chamber, and readout connectors, a Micromegas detector is fabricated. The photo of 400×400 mm² detector and 600×600 mm² detector is shown in Fig. 2.

Fig. 9. Residual distributions of x/y dimensions of 600×600 mm² detectors. The wider residual distribution is due to errors in the reference trajectory.

 $4.150 \times 150 \text{ mm}^2$ reference detectors

This paper introduces large area Micromegas detectors fabricated using the TBM method, and investigates their performance. Through cosmic ray testing of 400×400 mm² detectors, the efficiency is better than 95%, the position resolution by the charge center method is 100-120 μm, and the μTPC reconstruction achieves a position resolution of approximately 160 μm at angles greater than 20°. A preliminary study of 600×600 mm² detectors has been conducted. Additionally, a new algorithm for alignment of planar detectors is proposed in this study, effectively addressing the divergence issue during rotation alignment in the x/y dimensions.

- [1] Kawamoto T , Richter R , Dallapiccola C ,et al.New Small Wheel Technical Design Report[J]. 2013.
- [2] Colaleo A , Safonov A , Sharma A ,et al.CMS Technical Design Report for the Muon Endcap GEM Upgrade[J]. 2015.
- [3] Feng J , Zhang Z , Liu J ,et al.A thermal bonding method for manufacturing Micromegas detectors[J].North-Holland, 2021.DOI:10.1016/J.NIMA.2020.164958.
- [4] Blobel V. Software alignment for tracking detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Detectors and Associated Equipment, 2006, 566(1):5-13.DOI:10.1016/j.nima.2006.05.157.

To evaluate the performance of large-area detectors, a cosmic ray test platform was established, as shown in Fig. 3. Within this system, the 2 central 400×400 mm² detectors are designed for testing purposes. The remaining $8\,150 \times 150\,\text{mm}^2$ detectors are grouped in sets of 4, with each set placed above and below the test detectors, serving as reference tracks for muons from cosmic rays.

1. Introduction

The large area and high spatial resolution of particle detection are important aspects in the research and application of micropattern gaseous detector (MPGD). For instance, in the upgrade of the ATLAS NSW [1], the large area Micromegas detector has been selected, with a single module covering an area of $2-3$ m². Similarly, the CMS GEMs [2] also have opted the GEM detector, with a single module covering an area of 0.28 -0.45 m². In this study, we utilized the thermal bonding method (TBM) [3] to manufacture 400×400 mm² and 600×600 mm² Micromegas detectors and set up a cosmic ray test system to evaluate detector performance. Using this system, we have developed an alignment algorithm and investigated the position resolution, detection efficiency, and μTPC reconstruction.

2. Design and fabrication of Micromegas

Fig. 3. Schematic of cosmic ray test platform.

→ μTPC → weighted average – charge center

6. Conclusion

Reference

3. Experimental setup for cosmic ray test