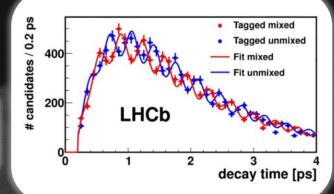
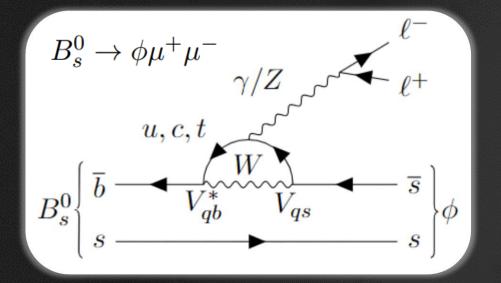
Solution Solution Solution

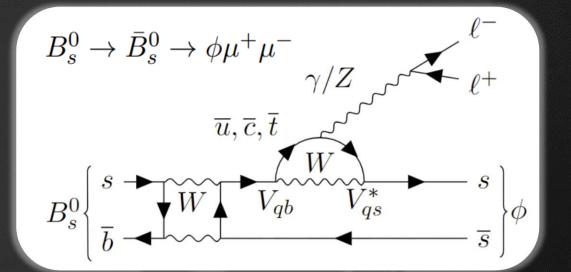
Jason Aebischer, Valeriia Lukashenko, Ben Kilminster, <u>Anson Kwok</u>, Zach Polonshy 1619124 CC Physics Performance Meeting

Once upon a time.....

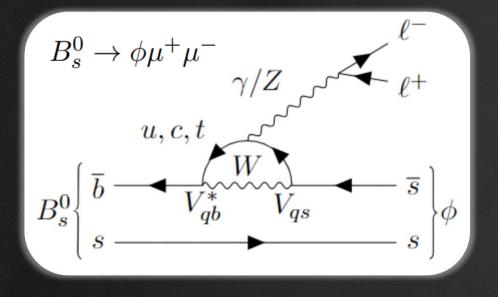

Cosmological measurement shows: (n_{baryon}-n_{anti-baryon})/n_{photon} ~ 10-9 [Matter >> Anti-matter]

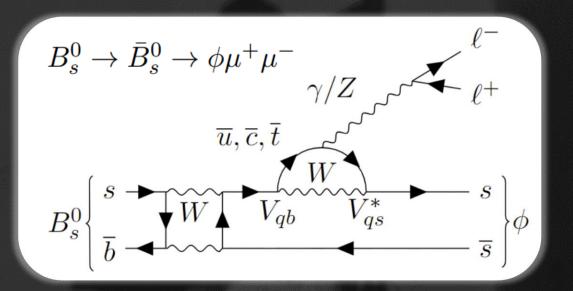
Sakharov Condition (within Baryogenesis):


- Baryon number violation
- Interactions out of thermal equilibrium
- <u>C, CP violation</u>

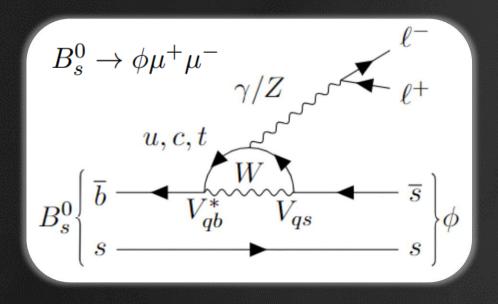

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5)$$

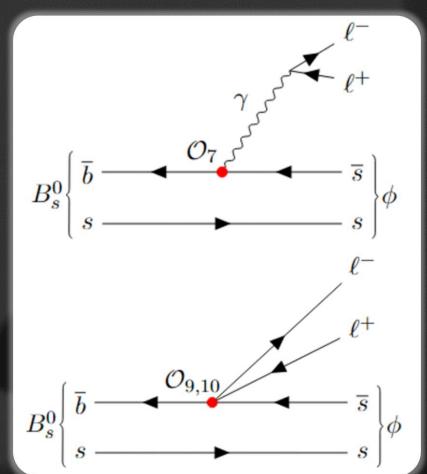
We have CPV in SM! But not enough [Mostly CPV in non-leptonic decay]





Just an example, there are more diagrams


It is FCNC!!! Loop suppressed: BR~8x10⁻⁷ (BR measurement done by LHCb in 2021 [arXiv:2105.14007]) [Leptonic CPV is not yet fully explored]



BSM could introduce CPV in FCNC operators: time-dependent measurements are sensitive to $Im[C_{7,9,10}]$

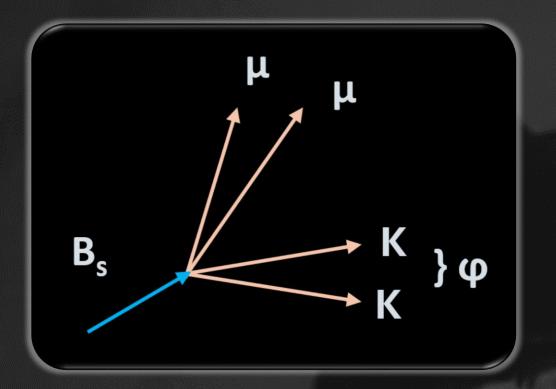
Just an example, there are more diagrams

Why FCC-ee

FCC-ee at Z-pole

b-hadron	Belle II	LHCb	FCC-ee
B^0, \bar{B}^0	$5.3 imes 10^{10}$	$6 imes 10^{13}$	$7.2 imes 10^{11}$
B^{\pm}	$5.6 imes10^{10}$	$6 imes 10^{13}$	$7.2 imes 10^{11}$
B^0_s, \bar{B}^0_s	$5.7 imes 10^8$	$2 imes 10^{13}$	1.9×10^{11}
B_c^{\pm}		4×10^{11}	1.1×10^9
$\Lambda^0_b, ar{\Lambda}^0_b$		$2 imes 10^{13}$	1.5×10^{11}

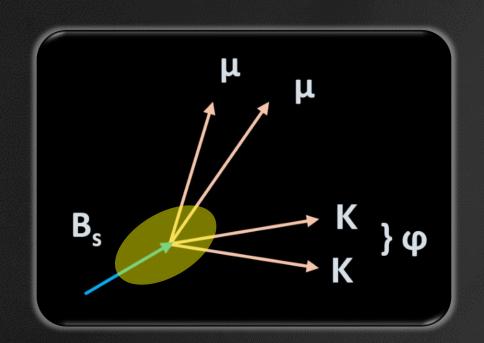
In general (you all know better than I do):

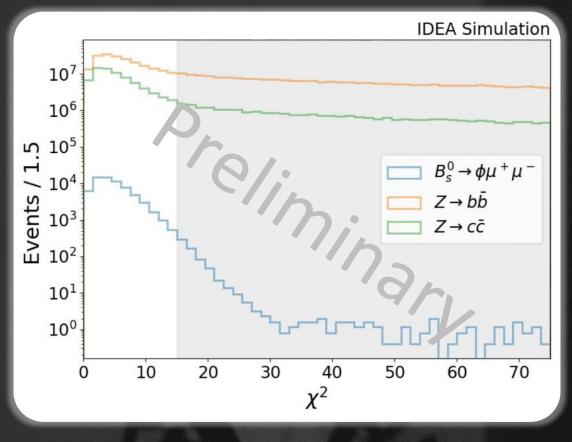

Clean

. . .

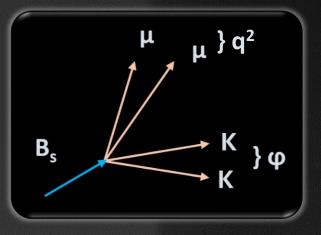
- Good Flavor Tagging (vs LHCb)
- - Good Vertexing (vs Belle II)

(vs LHCb) Large Stat. (vs Belle II)

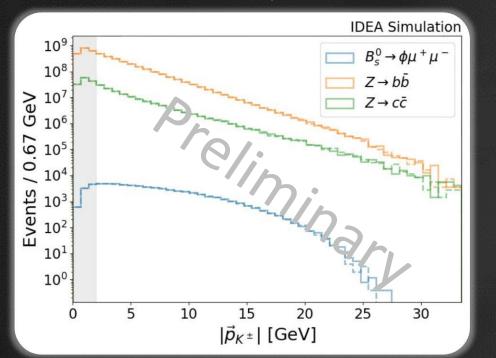

Cartoon Diagram of Signal.....



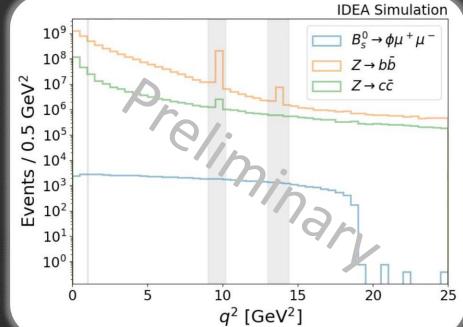
We use Pythia + Delphes (IDEA) for simulating signal & backgrounds


Some Physics of Signal.....

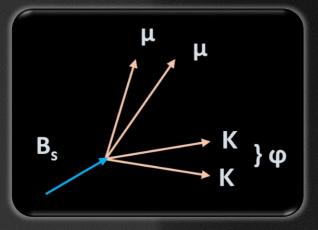
Vertex Fit

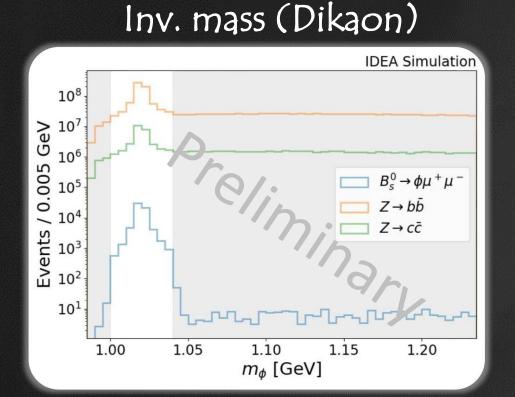


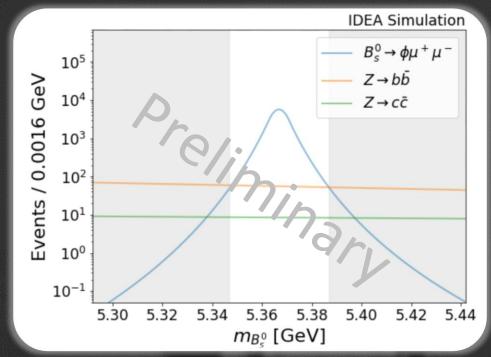
Some Physics of Signal....



Resonances


Kinematics

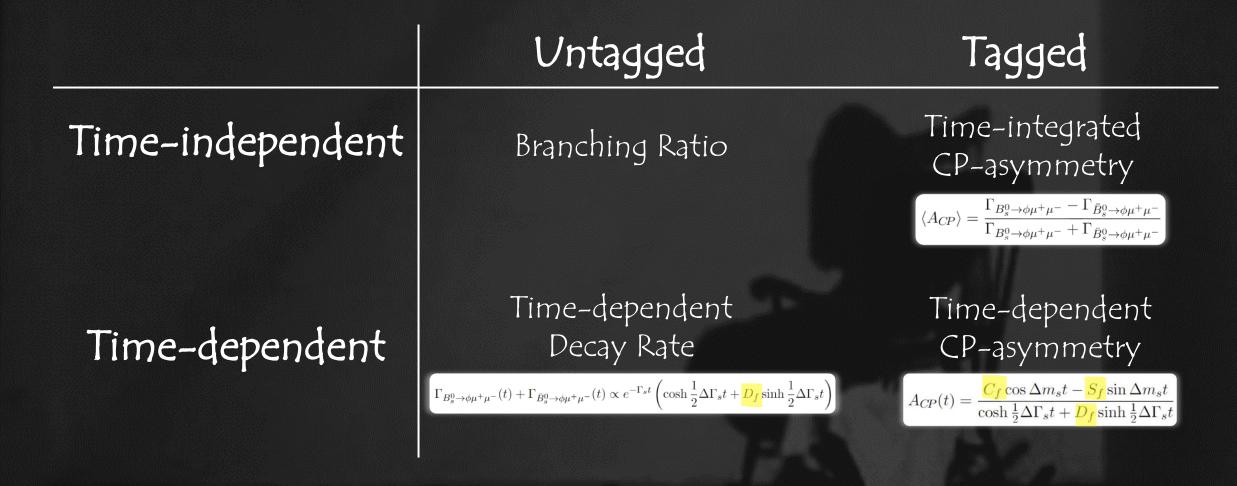




Some Physics of Signal....

Inv. Mass (Dikaon + Dimuon)

Cut Flow.



Cut Flow.

Channel	$B_s^0 \to \phi \mu^+ \mu^-$	$Z ightarrow b ar{b}$	$Z \to c \bar{c}$
Events at FCC-ee	7.19×10^{4}	9.07×10^{11}	7.22×10^{11}
$N_{ m FS}$	$6.72 imes 10^4$	$4.34 imes 10^9$	2.82×10^8
N_{χ^2}	$6.61 imes 10^4$	$2.15 imes 10^8$	$7.25 imes 10^7$
$N_{ ec{p} }$	$4.25 imes 10^4$	$5.98 imes 10^7$	$2.25 imes 10^6$
$N_{m_{\phi}}$	$4.23 imes 10^4$	$3.21 imes 10^7$	$3.64 imes 10^5$
N_{q^2}	$3.66 imes10^4$	$1.24 imes 10^7$	$3.13 imes 10^6$
$N_{m_{B_s^0}}$	3.62×10^{4}	1.39×10^{3}	2.13×10^{2}

Precision: ~0.5% (vs LHCb: ~2.6%)

What Can We Measure....?

What Can We Measure....?

agg

ning

teper

ay Ra

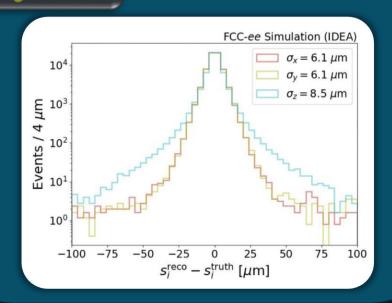
 $\propto e^{-\Gamma_s t}$

Fact Sheet on "Tagging"

Tell they're from B or anti-B

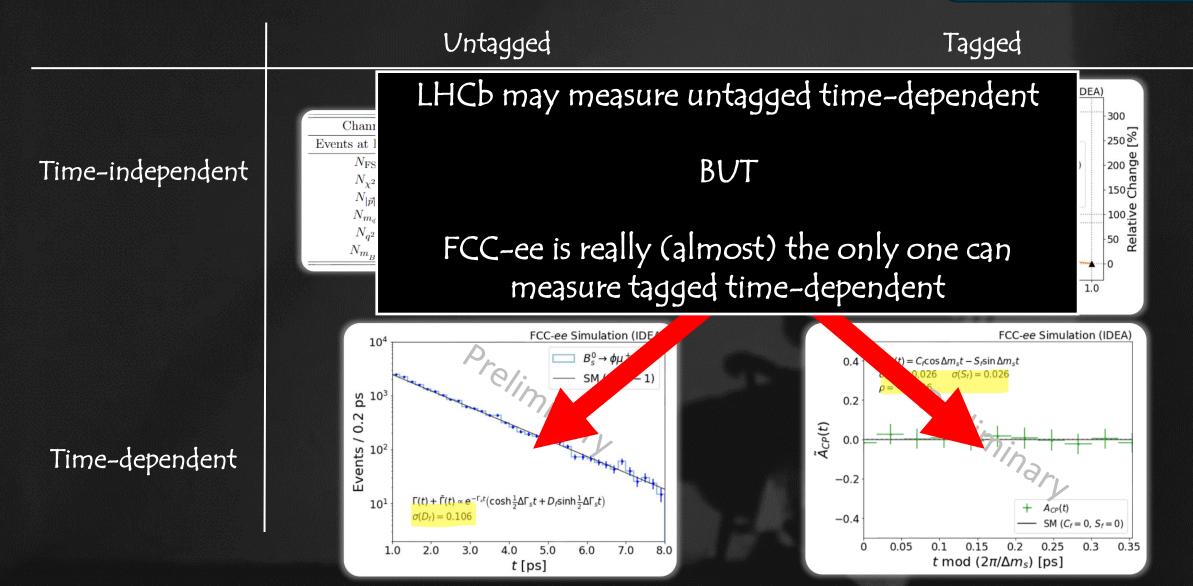
Tag eff.: How often we can tell something Tag Rate: How often we get it right

Uncert. ~ 1/sqrt{Tag Power}

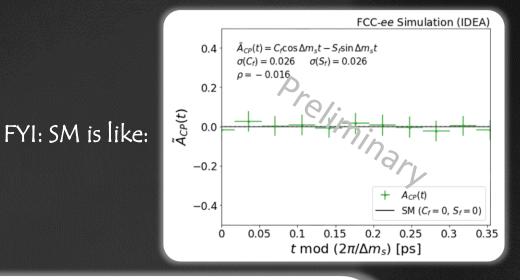

	LEP	Belle II	BaBar	LHCb
P_{tag}	25-30%	30%	30%	6%

Fact Sheet on "Timing"

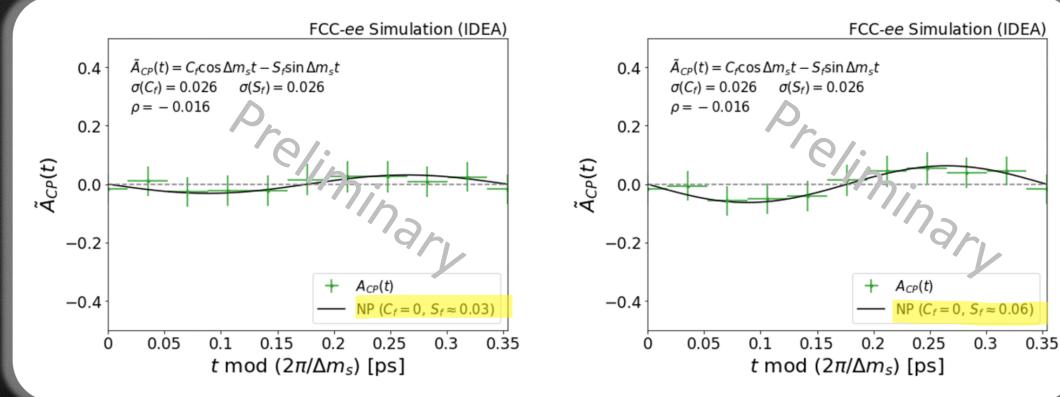
Time resolution effect: dilution factor (~0.995)


Bs

Function of: PV, SV, Boost [Dominated by SV resolution]


What Can We Measure....?

"Tagging": Tell they're from B or anti-B **Uncert. ~ 1/sqrt{Tag Power}**



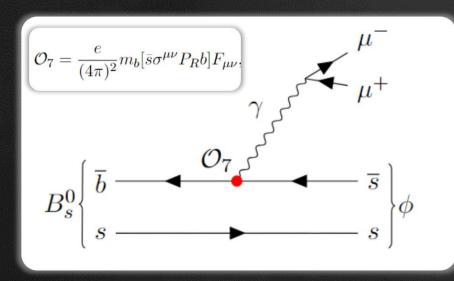
10

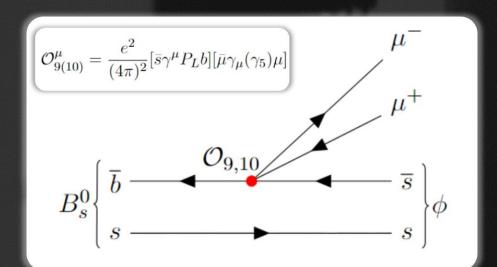
IFNP exists....?

11

Conclusion (Analysis Part):

Now (we think) we know what we can measure.....


Here's


Theory

Model-independent Way (EFT).....

$$\mathcal{H}^{\text{eff}} \supset -\frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} \left(\sum_{i=1}^8 \left(\mathcal{C}_i \mathcal{O}_i + \mathcal{C}'_i \mathcal{O}_i' \right) + \sum_{i=9}^{10} \left(\mathcal{C}_i \mathcal{O}_i^\mu + \mathcal{C}'_i \mathcal{O}_i^\mu \right) \right) + \text{h.c.}$$

Want to see how Wilson Coefficients (C_i) deviate from SM value

Connecting EXP-TH (An Example).....

$$\begin{split} C_{\phi\mu\mu} &= \frac{\tau_{B_s}}{2} \frac{\int dq^2 \sum_i \kappa_i \left(J_i(q^2) - \tilde{J}_i(q^2) \right)}{\langle \mathcal{B}_{\phi\mu\mu} \rangle}, \quad S_{\phi\mu\mu} = -\frac{\tau_{B_s}}{2} \frac{\int dq^2 \sum_i \kappa_i s_i}{\langle \mathcal{B}_{\phi\mu\mu} \rangle}, \\ D_{\phi\mu\mu} &= -\frac{\tau_{B_s}}{2} \frac{\int dq^2 \sum_i \kappa_i h_i}{\langle \mathcal{B}_{\phi\mu\mu} \rangle}. \end{split}$$

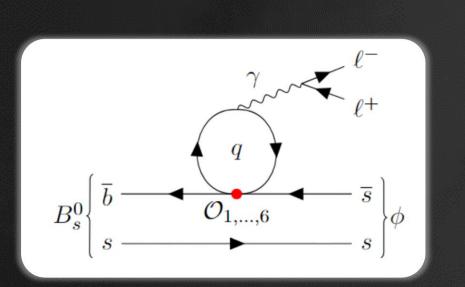
$$\begin{aligned} &J_{1s} = \frac{(2+\beta_{\mu}^{2})}{4} \left(|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right) + \frac{4m_{\mu}^{2}}{q^{2}} \Re \left(A_{\perp}^{L} A_{\perp}^{R*} + A_{\parallel}^{L} A_{\parallel}^{R} \right) \\ &J_{1c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\mu}^{2}}{q^{2}} \left[|A_{t}|^{2} + 2\Re \left(A_{0}^{L} A_{0}^{R*} \right) \right] , \\ &J_{2s} = \frac{\beta_{\mu}^{2}}{4} \left(|A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right) , \\ &J_{2c} = -\beta_{\mu}^{2} \left(|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} \right) , \\ &h_{1s} = \frac{2 + \beta_{\mu}^{2}}{2} \Re \left(\widetilde{A}_{\perp}^{L} A_{\perp}^{L*} + \widetilde{A}_{\parallel}^{L} A_{\parallel}^{L*} + \widetilde{A}_{\perp}^{R} A_{\perp}^{R*} + \widetilde{A}_{\parallel}^{R} A_{\parallel}^{R*} \right) \\ &+ \frac{4m_{\mu}^{2}}{q^{2}} \Re \left(\widetilde{A}_{\perp}^{L} A_{\perp}^{L*} + \widetilde{A}_{\parallel}^{L} A_{\parallel}^{R*} + A_{\perp}^{L} \widetilde{A}_{\perp}^{R*} + A_{\parallel}^{L} \widetilde{A}_{\parallel}^{R*} \right) \\ &h_{1c} = 2\Re \left(\widetilde{A}_{0}^{L} A_{0}^{L*} + \widetilde{A}_{0}^{R} A_{0}^{R*} \right) + \frac{8m_{\mu}^{2}}{q^{2}} \Re \left(\widetilde{A}_{t} A_{t}^{*} + \widetilde{A}_{0}^{L} A_{0}^{R*} + A_{0}^{L} \widetilde{A}_{0}^{R*} \right) \\ &h_{2s} = \frac{\beta_{\mu}^{2}}{2} \Re \left(\widetilde{A}_{\perp}^{L} A_{\perp}^{L*} + \widetilde{A}_{\parallel}^{L} A_{\parallel}^{L*} + \widetilde{A}_{\perp}^{R} A_{\perp}^{R*} + \widetilde{A}_{\parallel}^{R} A_{\parallel}^{R*} \right) \\ &h_{2c} = -2\beta_{\mu}^{2} \Re \left(\widetilde{A}_{0}^{L} A_{0}^{L*} + \widetilde{A}_{0}^{R} A_{0}^{R*} \right) \end{aligned}$$

Observable as function of C's

$$\begin{split} A_{\perp}^{L,R} &= N\sqrt{2\lambda} \left\{ \left(C_{9} \mp C_{10} \right) \frac{V(q^{2})}{m_{B_{s}^{0}} + m_{\phi}} + \frac{2m_{b}}{q^{2}} C_{7} T_{1}(q^{2}) \right\} , \\ A_{\parallel}^{L,R} &= -N\sqrt{2} \left(m_{B_{s}^{0}}^{2} - m_{\phi}^{2} \right) \left\{ \left(C_{9} \mp C_{10} \right) \frac{A_{1}(q^{2})}{m_{B_{s}^{0}} - m_{\phi}} + \frac{2m_{b}}{q^{2}} C_{7} T_{2}(q^{2}) \right\} , \\ A_{0}^{L,R} &= -\frac{N}{2m_{\phi}\sqrt{q^{2}}} \left\{ 2m_{b} C_{7} \cdot \left[\left(m_{B_{s}^{0}}^{2} + 3m_{\phi}^{2} - q^{2} \right) T_{2}(q^{2}) - \frac{\lambda T_{3}(q^{2})}{m_{B_{s}^{0}}^{2} - m_{\phi}^{2}} \right] \right. \\ &+ \left(C_{9} \mp C_{10} \right) \cdot \left[\left(m_{B_{s}^{0}}^{2} - m_{\phi}^{2} - q^{2} \right) \left(m_{B_{s}^{0}} + m_{\phi} \right) A_{1}(q^{2}) - \frac{\lambda A_{2}(q^{2})}{m_{B_{s}^{0}}^{2} + m_{\phi}} \right] \right\} \\ A_{t} &= 2N \frac{\sqrt{\lambda}}{\sqrt{q^{2}}} C_{10} A_{0}(q^{2}) , \end{split}$$

J's, h's, s's functions of Amplitudes

Our projection is pushing theory limit

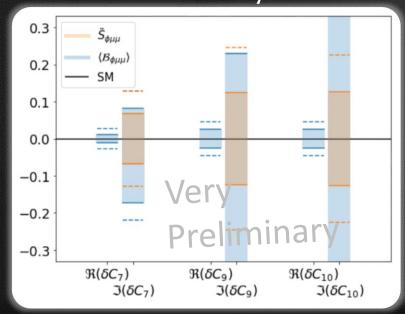

Time-Dependent Precision Measurement of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ Decay at FCC-*ee*

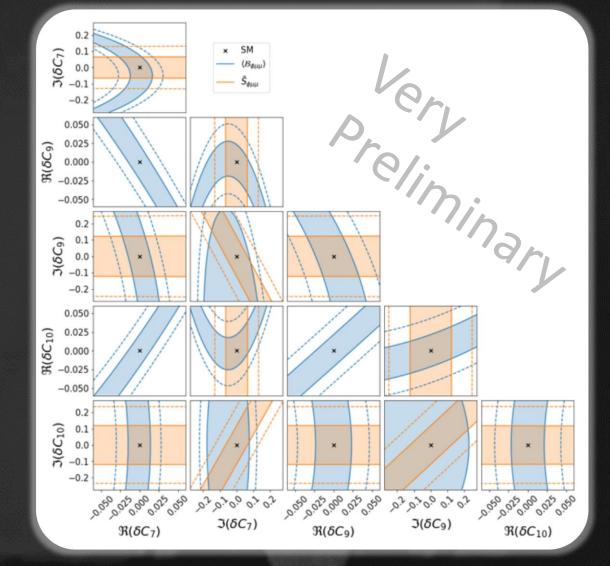
Should also apply to SM prediction

Long-distance Effects.....

$$C_7^{\text{eff}} = C_7 - \frac{1}{3}C_3 - \frac{4}{9}C_4 - \frac{20}{3}C_5 - \frac{80}{9}C_6, \quad C_9^{\text{eff}} = C_9 + \frac{Y(q^2)}{Y(q^2)},$$

$$\begin{split} Y(q^2) = & \frac{4}{3}C_3 + \frac{64}{9} + \frac{64}{27}C_6 - \frac{1}{2}h(q^2, 0)\left(C_3 + \frac{4}{3}C_4 + 16C_5 + \frac{64}{3}C_6\right) \\ & + h(q^2, m_c)\left(\frac{4}{3}C_1 + C_2 + 6C_3 + 60C_5\right) \\ & - \frac{1}{2}h(q^2, m_b)\left(7C_3 + \frac{4}{3}C_4 + 76C_5 + \frac{64}{3}C_6\right), \\ & h\left(q^2, \frac{q^2x}{4}\right) = -\frac{4}{9}\left(\log\left(\frac{m^2}{\mu^2}\right) - \frac{2}{3} - x\right) \\ & - \frac{4}{9}\left(2 + x\right) \times \begin{cases} \sqrt{x - 1}\arctan\frac{1}{\sqrt{x - 1}} & , x > 1 \\ \sqrt{1 - x}\left(\log\frac{1 + \sqrt{1 - x}}{\sqrt{x}} - \frac{i\pi}{2}\right) & , x \le 1 \end{cases}. \end{split}$$

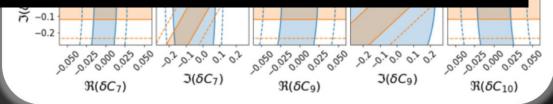



16

Money Plot (In Construction).....

$$\begin{split} &\frac{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)}{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)_{\mathrm{SM}}} = 1 + \sum_k b_k^{\mathrm{Full}} \delta C_k + \sum_{k\ell} B_{k\ell}^{\mathrm{Full}} \delta C_k \delta C_\ell \,, \\ &\frac{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)^{q^2 \in [1.1, 6.0]}}{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)_{\mathrm{SM}}^{q^2 \in [1.1, 6.0]}} = 1 + \sum_k b_k^{\mathrm{Low}} \delta C_k + \sum_{k\ell} B_{k\ell}^{\mathrm{Low}} \delta C_k \delta C_\ell \,, \\ &\frac{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)^{q^2 \ge 15}}{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)_{\mathrm{SM}}^{q^2 \ge 15}} = 1 + \sum_k b_k^{\mathrm{High}} \delta C_k + \sum_{k\ell} B_{k\ell}^{\mathrm{High}} \delta C_k \delta C_\ell \,, \end{split}$$

Can learn NP up to O(10 TeV) [Stat. only]


Money Plot (In Construction).....

$\frac{\operatorname{Br}(B^0_s \to \phi \mu^+ \mu^-)}{\operatorname{Br}(B^0_s \to \phi \mu^+ \mu^-)_{\mathrm{SM}}} = 1 + \sum_k b_k^{\mathrm{Full}} \delta C_k + \sum_{k\ell} B_{k\ell}^{\mathrm{Full}} \delta C_k \delta C_\ell ,$	$\begin{array}{c} 0.2 \\ \hline 0.1 \\ 0.0 \\ \hline 0.0 \\ \hline \end{array} \xrightarrow{\text{SM}} (B_{\phi\mu\mu}) \end{array}$	
$\frac{\operatorname{Br}(B_s^0 \to \phi \mu^+ \mu^-)^{q^2 \in [1.1, 6.0]}}{\operatorname{Br}(B_s^0 \to \phi \mu^+ \mu^-)^{q^2 \in [1.1, 6.0]}_{\mathrm{SM}}} = 1 + \sum_k b_k^{\mathrm{Low}} \delta C_k + \sum_{k\ell} B_{k\ell}^{\mathrm{Low}} \delta C_k \delta C_\ell ,$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ -0.1 \\ -0.2 \end{array} $	Ver.
	0.050	

WARNING: VERY Preliminary

Still discussing how to get more precise theory prediction

-0.2		Prelimi	nary	
0.5	$\Re(\delta C_7)$ $\Im(\delta C_7)$	ℜ(δC ₉) ℑ(δC ₉)	R(δC ₁₀) J(δC ₁₀)	

Form Factor Uncertainties.....

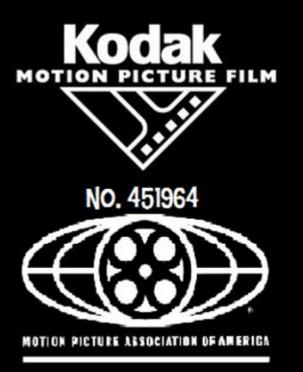
Using interpolated results from Lattice QCD + Light-cone Sum Rules

Conclusion		
Big Question	Why matter >> antimatter?	
Exact Problem	Do we have CPV from NP	
	(in leptonic rare, FCNC, decay)?	
Where do we test it	FCC- <i>ee</i> : Ideal to test rare process!	
	[Clean, Good Vertexing,]	
How to Interpret it	EFT: Tell how (NP) complex phase	
	affects experimental measurements	
What can we learn	Can probe NP up to O(10 TeV)	
	[If just theoretical uncert. suppressed to	
	similar order of magnitude]	
In Progress	Include the theoretical uncert. in the fit	

Conclusion

Big QuestionWhy matter >> antimatter?Exact ProblemDo we have CPV from NP

There is only one way to find out if it oscillates! MEASURE IT!


[If just theoretical uncert. suppressed to similar order of magnitude] In Progress Include the theoretical uncert. in the fit **Crew** --- alphabetical ---

Theoretical Part Jason Aebischer Experimental Part (Boss) Ben Kilminster Experimental Part Anson Kwok Experimental Part Valeriia Lukashenko Theoretical Part Zach Polonsky

Special Thank

Useful Discussions and Feedbacks Armin Ilg

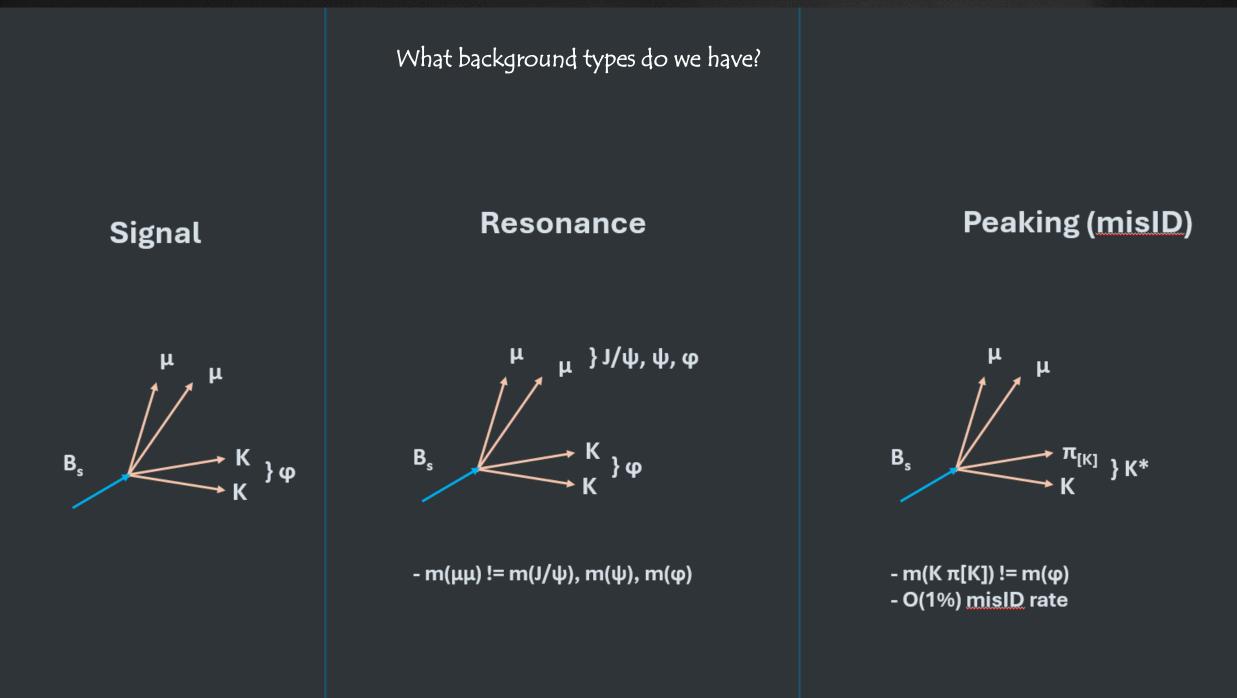
We are not supported by these companies

In Selected Theatres

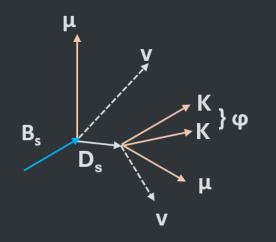
THIS PICTURE MADE UNDER THE JURISDICTION OF

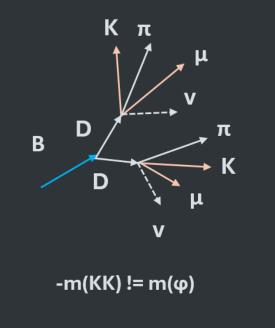
AFFILIATED WITH A.F.L.-C.I.O.-C.L.C.

COLOR BY


But supported by

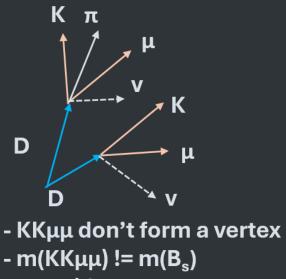
But supported by


Universität Zürich^{uzH}

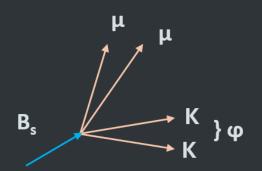


What background types do we have?

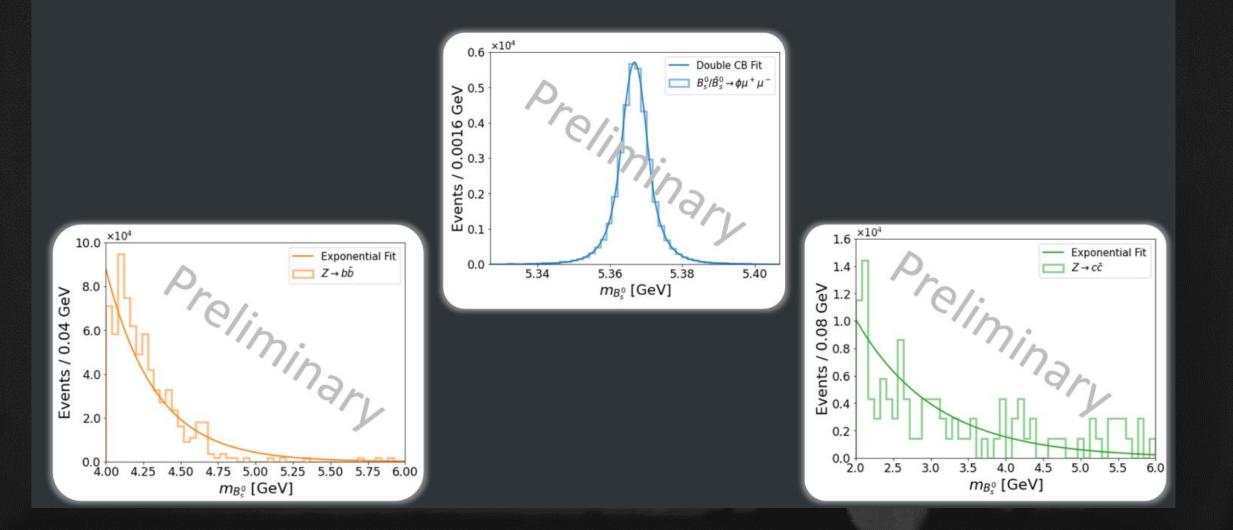
Z>bb Cascade

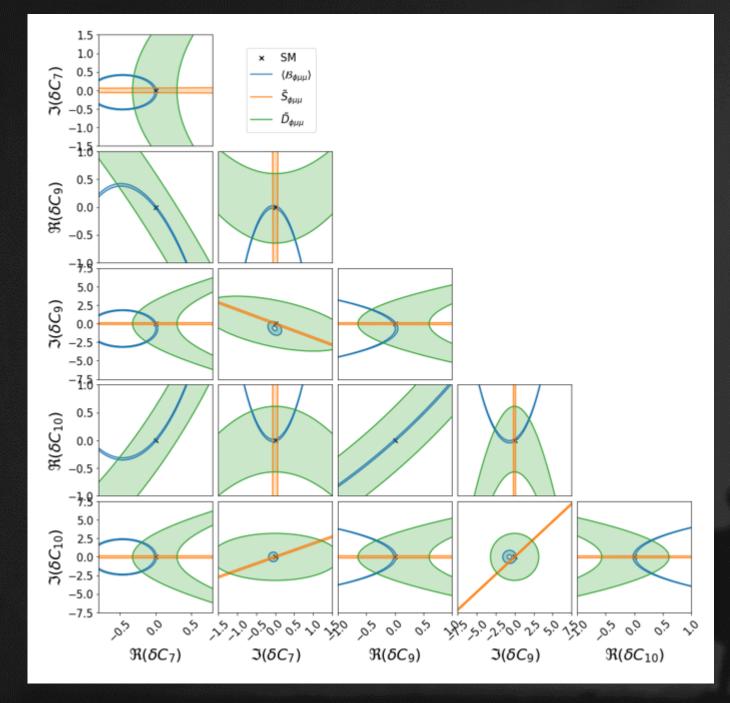


- ККµµ don't form a vertex - m(ККµµ) != m(B_s)



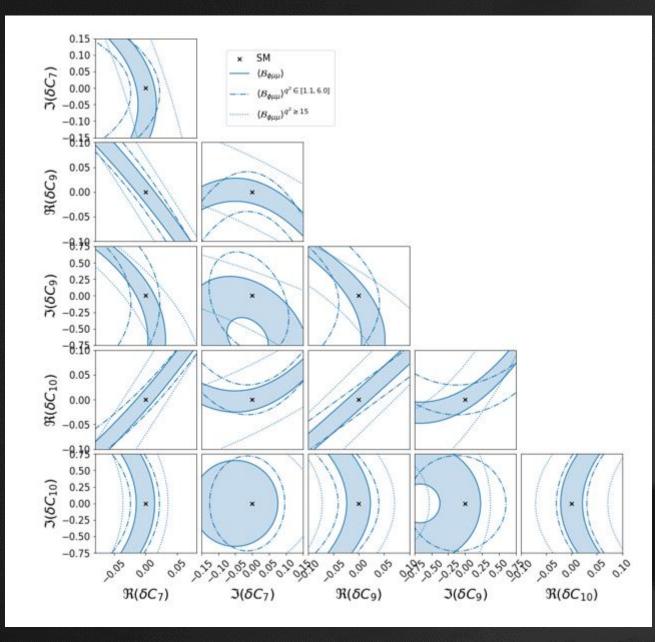
Z>bb Comb.




- m(KK) != m(φ)

Signal

Why doing a fit in $m(B_s)$? Leak of simulation samples



Why D_f measurement is not included?

Not so sensitive compared to S_f

Extra argument vs LHCb: They can measure D_f but not much physics can be told from D_f along.

Binned measurements