

heinrichhertzstiftung

EWPOs: from beauty to strange + photon-energy resolution from and for flavours

Lars Röhrig^{1,2}, Stéphane Monteil² **16/09/2024**

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

Including work from A. Garcia Gonzales (master student, UCA) and J. Dutta (undergraduate, Purdue)

ECAL photon-resolution

This is an academic excercise to emphasize the importance of ECAL resolution for flavours

- Rare, radiative FCNC $b \rightarrow s\gamma$ transitions probe NP in loop-diagrams + sensitivity to photon dipole operator C_7
- Distinction between B_d and B_s modes crucial also for angular analysis of $B_s \to K^* \gamma$

- $\rightarrow B_{d,s}$ differentiation depends of photon-energy resolution
- $B_s \to K^* \gamma$ not yet observed, therefore estimate event yields via

$$\frac{N_{B_d}}{N_{B_s}} \sim \frac{f_{b \to B_d}}{f_{b \to B_s}} \cdot \left| \frac{V_{ts}}{V_{td}} \right|^2 \approx 92$$

 \rightarrow Suppressed B_s signal in presence of overwhelming B_d background

ECAL photon-resolution

This is an academic excercise to emphasize the importance of ECAL resolution for flavours

- From full-stat winter-2023: reconstructed K^* , simplified emulation (stochastic term) of photon-energy resolution from MC γ
- \blacksquare Validated, that $\frac{12\,\%}{\sqrt{E_{\gamma}}}$ roughly corresponds to IDEA baseline \checkmark

• High-energy resolution from crystals $\mathcal{O}\left(\frac{2\%}{\sqrt{E_{\gamma}}}\right)$, e. g. [2312.07365]

• Signal purity evaluated 1σ around B_s mass-peak

Overview – exclusive taggers

- Exclusive taggers for EWPOs $R_{b,c,s}$ and $A_{FB}^{b,(c,s)}$ overcome systematic limitations of LEP-like taggers
- Concept proven for R_b and $A^b_{FB} \checkmark$

What we have:

- **Beauty tagger** for R_b and A_{FB}^b with $\mathcal{O}(200)$ decay modes $\rightarrow \sigma_{\text{stat.}}(R_b) = \sigma_{\text{syst.}}(R_b) = 2 \cdot 10^{-5}$ for $\sigma(\Delta C_b)/\Delta C_b = 10\%$ $\rightarrow \sigma_{\text{stat.}}(A_{\text{FB}}^b) = \sigma_{\text{syst.}}(A_{\text{FB}}^b) = 6 \cdot 10^{-5}(2 \cdot 10^{-5})$ for $\sigma(C_{\text{QCD}})/C_{\text{QCD}} = 5(1)\%$
- Charm tagger for R_c with $\mathcal{O}(20)$ decay modes $\rightarrow \sigma_{\text{stat.}}(R_c) = 1 \cdot 10^{-5}$ from only $\overline{D}^0 \rightarrow K^+ \pi^ \rightarrow A_{\text{FB}}^c$ straightforward (D^+, D_s^+, Λ_c)

Strange tagger

- For R_s with $\phi(1020) \rightarrow K^+K^- \rightarrow \sigma_{\rm stat.}(R_s) = 1.3 \cdot 10^{-5}$
- For A^s_{FB} with $\Xi^- \rightarrow [p\pi^-]_{\Lambda} \pi^- \rightarrow \sigma_{stat.}(A^s_{FB}) = 1.6 \cdot 10^{-4}$

Charm tagger for R_c

Based on double-tag method to simulatanoesly determine R_c and ε_c^c :

$$N_c = 2N_Z \cdot (R_c \varepsilon_c^c + R_b \varepsilon_b^c + (1 - R_b - R_c) \varepsilon_{uds}^c)$$
$$N_{c\bar{c}} = N_Z \cdot (R_c (\varepsilon_c^c)^2 C_c + R_b (\varepsilon_b^c)^2 C_b + (1 - R_b - R_c) (\varepsilon_{uds}^c)^2 C_{uds})$$

- Assume hemisphere correlations C_i to be unity with track selection outside luminous region
- Leading syst. uncertainties from mistag eff. ε_b^c and $\varepsilon_{uds}^c \rightarrow$ the smaller the better
- Exclusive *b*-hadron decays provide a way to measure ε_b^c
- Starting point: $\overline{D}^0 \to K^+\pi^-$ reconstruction from $\approx 4 \cdot 10^7 \ Z \to q \overline{q}$ winter-2023 samples (IDEA)

Charm tagger for R_c

Target: $\sigma_{stat.} = 1.1 \cdot 10^{-5}$ (full FCC-ee stat.), main background: $\overline{D}^0 \to K^+\pi^-$ from $Z \to b\overline{b}$ $Z \to uds$ negligible ($\varepsilon_{uds}^c \approx 0$) after momentum cut of $p_{\overline{D}^0} > 16 \text{ GeV}$

- Define the pointing angle $\Omega = \frac{\vec{p}_{\vec{D}^0} \cdot \vec{d}}{|\vec{p}_{\vec{D}^0}| \cdot |\vec{d}|}$ and $\vec{d} = PV SV$ as discriminative variable
- Train BDT to further purify selection \rightarrow 97%, **but:** more decay modes \rightarrow higher momentum cut \rightarrow higher purity
- Limiting factor: Knowledge of background efficiency, requirements for track resolution?

Charm tagger for R_c

Target: $\sigma_{stat.} = 1.1 \cdot 10^{-5}$, main background: $\bar{D}^0 \rightarrow K^+ \pi^-$ from $Z \rightarrow b\bar{b}$

- Knowledge of background efficiency depends on separation power \rightarrow vertex and track resolution crucial
- Improved d_0 and z_0 resolution by 25 % and 50 %

With 25% improvement: precision of ε_c^b from excl. *b*-tagger sufficient to reach $\sigma_{syst.}(R_c) \approx \sigma_{stat.}(R_c)$

Strange tagger for R_s

Disclaimer: All results obtained with PYTHIA's $s \to \phi(1020)$ hadronisation fraction of $\mathcal{O}(1\%)$, Target: $\sigma_{stat.} = 1 \cdot 10^{-5}$, main background: $\phi(1020) \to K^+K^-$ from $Z \to c\bar{c}$

- Measurement of R_s examined with $\phi(1020) \rightarrow K^+ K^-$ (50% branching ratio)
- Reconstruction MC-seeded, but no showstoppers identified for ΔC_i when track selection outside luminous region
- Here: Ω impact higher since less decay modes available, however with E > 40 GeV: purity above 99 %

Strange tagger for A_{FB}^s

Disclaimer: All results obtained with PYTHIA's $s \to \Xi^-$ hadronisation fraction of $\mathcal{O}(4\%)$, Target: $\sigma_{stat.} = 1.6 \cdot 10^{-4}$, main background: $\Xi^- \to \Lambda \pi^-$ from $Z \to c\bar{c}$

- Outlined on MC-truth level, since Ξ^- reconstruction challenging: $\mathcal{O}(\bar{\tau}_{\Xi^-}) = 10^{-10} \text{ s}, \langle L_{\Xi^-} \rangle = 1.2 \text{ m}$
- \rightarrow Started to investigate Ξ^- track reconstruction, however: significant eff. loss due to Ξ^- decay length
- High-energetic Ξ^- tracking for PID (vtx and drift chamber), π^- kink (drift chamber) + late V^0 -reconstruction of Λ (drift chamber)
- $\blacksquare~E_{\Xi^-}>40\,{\rm GeV}$ sufficient to reach purity $>98.2\,\%$

Strange tagger for A_{FB}^s

Disclaimer: All results obtained with PYTHIA's $s \to \Xi^-$ hadronisation fraction of $\mathcal{O}(4\%)$, Target: $\sigma_{stat.} = 1.6 \cdot 10^{-4}$, main background: $\Xi^- \to \Lambda \pi^-$ from $Z \to c\bar{c}$

- \blacksquare $A^{s}_{\rm FB}$ measurement becomes charge-unambiguous and almost background-free
- Precision depends on hadronisation fraction (tbd from FCC) and selection efficiency for high-E candidates (WIP)

