Higgs mass analysis with FullSim

Jan Eysermans (MIT)

Joint Software Physics Performance meeting September 30, 2024

Overview

Analysis strategy – performed using IDEA Delphes simulation

- Electron and muon final states
- Tight selection on $Z(II)H \rightarrow$ two opposite-sign leptons
- Compute recoil and fit shape analytically with Crystal Ball and Gauss

 $M_{recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$

Final state	Stat. (MeV)	Stat. + Syst. (MeV)
Electron	4.95	5.68
Muon	3.92	4.74
Combined	3.07	3.97

Uncertainty driven by

- Lepton momentum resolution \rightarrow tracker and material budget
- Beam Energy Spread \rightarrow machine
- Statistically limited, dominant systematic center-of-mass energy

Detector configurations

	Final state	Muon	Electron	Combination
Nominal configuration —	Nominal	3.92(4.74)	4.95(5.68)	3.07(3.97)
Crystal ECAL to Dual Readout	Inclusive	3.92(4.74)	4.95(5.68)	3.10(3.97)
	Degradation electron resolution	3.92(4.74)	5.79(6.33)	3.24(4.12)
Nominal 2 1 \rightarrow field 3 1	Magnetic field 3T	3.22(4.14)	4.11(4.83)	2.54(3.52)
IDEA drift chamber \rightarrow CLD Si tracker \longrightarrow	Silicon tracker	5.11(5.73)	5.89(6.42)	3.86(4.55)
	BES 6% uncertainty	3.92(4.79)	4.95(5.92)	3.07(3.98)
Impact of Beam Energy Spread	Disable BES	2.11(3.31)	2.93(3.88)	1.71(2.92)
Perfect (=gen-level) momentum	Ideal resolution	3.12(3.95)	3.58(4.52)	2.42(3.40)
resolution	Freeze backgrounds	3.91(4.74)	4.95(5.67)	3.07(3.96)
	Remove backgrounds	3.08(4.13)	3.51(4.58)	2.31(3.45)

Higgs mass analysis with FullSim

Delphes-based Higgs mass analysis done using IDEA detector with drift chamber

IDEA with silicon tracker available in Delphes: replace drift chamber by CLD-like silicon tracker

- Compare FullSim CLD with FastSim IDEA silicon tracker
- Valid as the muon momentum is driven by the tracker
- Not necessarily true for electrons (calorimeter dependent momentum resolution)

FastSim Delphes: Winter2023 campaign

- Samples produced with original CLD-like implementation 1–2 years ago (see card here)
- In the meantime more recent implementation available (FCCeeDetWithSiTracking)
- See comparison next slide but need to understand what Delphes card corresponds to the FullSim detector

FullSim CLD: version CLD_o2_v05, Key4hep 2024-04-12

3 samples produced

- Central 125 GeV, 2 mass variations +/- 50 MeV
- 2 M events per sample
- Backgrounds kept Delphes

Sample	Events	Sample size
Delphes	2 M	16 GB
FullSim	2 M	2.3 TB

Comparison of tracker material budget

Left – "old" Delphes IDEA CLD silicon tracker implementation (see card here)

- Used for sample generation

Right – CLD FullSim tracker

Comparison of material budget

Left – "new" Delphes IDEA CLD silicon tracker implementation (see card here)

- Difference in material budget of the vertex detector

Right – CLD FullSim tracker

Analyzing FullSim vs FastSim samples

Leptons taken from PandoraPFOs collection – select on "type" == PDGID

FullSim samples produced with crossing angle of 15 mrad

- All the MC particles are boosted priori before propagating through the detector
- Requires to boost back all particles to the COM frame

```
Vec_rp unBoostCrossingAngle(Vec_rp in, float angle) {
    Vec_rp result;
    float ta = std::tan(angle);
    for (size_t i=0; i < in.size(); ++i) {
        auto & p = in[i];
        edm4hep::ReconstructedParticleData newp = p;
        float e = p.energy;
        float px = p.momentum.x;
        float e_prime = e * sqrt(1 + ta*ta) + px * ta;
        float px_prime = px * sqrt(1 + ta*ta) + e * ta;
        newp.momentum.x = px_prime;
        newp.energy = e_prime;
        result.push_back(newp);
    }
    return result;
}
</pre>
```

Analyzing FullSim vs FastSim samples

Harmonize FastSim and FullSim collections

```
if 'FullSim' in dataset.name:
    df = df.Define("ReconstructedParticles", "FCCAnalyses::unBoostCrossingAngle(PandoraPFOs, -0.015)")
    df = df.Define("muons all", "FCCAnalyses::sel type(13, ReconstructedParticles)")
    df = df.Alias("Particle", "MCParticles")
    df = df.Alias("Particle0", " MCParticles parents.index")
    df = df.Alias("Particle1", " MCParticles daughters.index")
    df = df.Alias("MCRecoAssociations0", " RecoMCTruthLink rec.index")
    df = df.Alias("MCRecoAssociations1", " RecoMCTruthLink sim.index")
else:
    df = df.Alias("Particle0", "Particle#0.index")
    df = df.Alias("Particle1", "Particle#1.index")
    df = df.Alias("MCRecoAssociations0", "MCRecoAssociations#0.index")
    df = df.Alias("MCRecoAssociations1", "MCRecoAssociations#1.index")
    df = df.Alias("Muon", "Muon#0.index")
    df = df.Define("muons all", "FCCAnalyses::ReconstructedParticle::get(Muon, ReconstructedParticles)")
## generic analysis selection goes here
```

Comparison cutflow

Cutflow event yields			
Cut variable	Delphes	Full Sim	
All events	73100	73100	
1 muon	72200	72300	
2 OS muons	67800	69000	
86 < m _{µµ} < 96	54900	55600	
20 < p _{µµ} < 70	54500	55200	
Recoil	53100	53700	
cos(θ _{miss})	48800	51400	

Vero good agreement of event yields within 1 %, except the $|\cos(\theta_{miss})|$

Can be expected as missing energy is sensitive to the detector as a whole + PF performance

Uncertainty on Higgs mass

FullSim recoil distribution slightly worse than Delphes

Repeat the fit producer as for the Delphes analysis

- Fit recoil distributions with Crystal Ball and Gauss
- Statistical-only fit, no systematics

Config	Uncertainty
Delphes	5.11 MeV
FullSim	6.41 MeV

Out-of-the box FullSim 25% worse than Delphes

10

Validation with Particle Gun

Independent validation with muon gun

- Produced muon gun (hepmc3) and propagated same events to Delphes and FullSim
- Several samples as function of theta and momentum

Validation with Particle Gun

Independent validation with muon gun

- Produced muon gun (hepmc3) and propagated same events to Delphes and FullSim
- Several samples as function of theta and momentum

Charge dependent momentum scale observed: alignment problem

Validation with Particle Gun

Independent validation with muon gun

- Produced muon gun (hepmc3) and propagated same events to Delphes and FullSim
- Several samples as function of theta and momentum

Angular resolutions: θ not centered around zero (φ OK)

Charge-dependent resolution

Restore the charge-dependent muon scale by applying scale

factors as function of $\boldsymbol{\theta}$

- Effect mostly cancels as it is formed from an opposite lepton pair
- Does not take into account bias in polar angle \rightarrow bias in recoil

Looking at charge-dependent resolution

- Small residual issues still present
- Resolution becomes very close to Delphes in the central region

Conclusions

Performed Higgs mass analysis using FullSim CLD samples

- Out-of-the-box FullSim performs 25% worse than Delphes
- Residual differences under investigation: issue with muon reconstruction degrading its performance
- Promising agreement with charge-dependent resolutions compared to Delphes

Outlook

- Understand and fix the muon reconstruction issue and redo the analysis
- Look at electrons