Sunday 15<sup>th</sup> September



# NuFACT 2024 Satellite Workshop: Multi-experiment oscillation analysis

Mark Scott m.scott09@imperial.ac.uk



#### What do we know (PDG 23)?

- $\sin^2 \theta_{23} = 0.455 \pm 0.018$
- $\cdot \quad \sin^2 \theta_{13} = 0.0223 \pm 0.0007$
- $\sin^2 \theta_{12} = 0.303 \pm 0.13$
- $|\Delta m_{32}^2| = (2.45 \pm 0.03) \times 10^{-3} \text{ eV}^2$
- $\Delta m_{21}^2 = (7.36 \pm 0.16) \times 10^{-5} \text{ eV}^2$

#### What don't we know?

- Do neutrinos violate CP?
- Is m<sub>3</sub> > m<sub>2</sub>? (Mass Ordering)
- Is  $\theta_{23} > 45^{\circ}$ ? (Octant)
- What is the value of  $m_1$ ?
- · Are neutrinos Majorana particles?
  - New physics?



#### What do we know (PDG 23)?

- $\sin^2 \theta_{23} = 0.455 \pm 0.018$
- $\cdot \quad \sin^2 \theta_{13} = 0.0223 \pm 0.0007$
- $\sin^2 \theta_{12} = 0.303 \pm 0.13$
- $|\Delta m_{32}^2| = (2.45 \pm 0.03) \times 10^{-3} \text{ eV}^2$
- $\Delta m_{21}^2 = (7.36 \pm 0.16) \times 10^{-5} \text{ eV}^2$

#### What don't we know?

- Do neutrinos violate CP?
- Is m<sub>3</sub> > m<sub>2</sub>? (Mass Ordering)
- Is  $\theta_{23} > 45^{\circ}$ ? (Octant)
- . What is the value of  $m_1$ ?
- · Are neutrinos Majorana particles?
- New physics?

# **Massive Neutrinos**

- Neutrino oscillation implies neutrinos have mass
- Mass generation mechanism unknown
  - Majorana or Dirac
  - Tree-level or loop
  - New particles (scalar, fermion etc.)
- Neutrino masses are tiny

Following taken from Annu. Rev. Nucl. Part. Sci. 2016.66:197-217



### **Neutrino mass models - Dirac**

- Add  $v_R$  SU(2) singlet to the SM
- Dirac mass term exists, but why are the neutrino masses so small?
  - Extra dimensions
  - New symmetries that forbid tree-level mass terms

•  $v_R$  can (must) have a Majorana mass term as well,  $\mathcal{L}_v = M_{ij} v_R^i v_R^j$ 

### Neutrino mass models - Majorana

• Add N new, massive right-handed neutrinos,  $v_R$ , with mass matrix  $M_N$ 

$$\mathcal{L}_{Dirac} = m_D v_L v_R \quad \text{and} \quad \mathcal{L}_{Majorana} = M_N v_R v_R$$
$$m_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_N \end{pmatrix}$$

- New mass scale not related to EWSB and Higgs
- 3x3 active neutrino mixing matrix a subset of (3+N) x (3+N) matrix
  - PMNS matrix may not be unitary

### **Unitarity measurements**

- Non-unitarity not seen in quarks (yet)
- Would indicate new physics
  - Generic search (steriles, neutrino decay, NSIs etc.)
- Requires overconstraint of PMNS parameters



### **Unitarity measurements in PMNS**

| • | Many contributions                                    | Experiment                                                                                   | Measured quantity with unitarity                                                                                                        |
|---|-------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|   | <ul> <li>Daya Bay</li> </ul>                          | $\begin{array}{c} \text{Reactor SBL} \\ (\overline{\nu}_e \to \overline{\nu}_e) \end{array}$ | $4 U_{e3} ^2 \left(1 -  U_{e3} ^2\right) = \sin^2 2\theta_{13}$                                                                         |
|   | – JUNO                                                | $\begin{array}{c} \text{Reactor LBL} \\ (\overline{\nu}_e \to \overline{\nu}_e) \end{array}$ | $4 U_{e1} ^2 U_{e2} ^2 = \sin^2 2\theta_{12} \cos^4 \theta_{13}$                                                                        |
|   | – SNO                                                 | SNO $(\phi_{CC}/\phi_{NC}$<br>Ratio)                                                         | $ U_{e2} ^2 = \cos^2 \theta_{13} \sin^2 \theta_{12}$                                                                                    |
|   | – Hyper-K / DUNE                                      | $\begin{array}{c} \mathrm{SK/T2K/MINOS} \\ (\nu_{\mu} \rightarrow \nu_{\mu}) \end{array}$    | $4 U_{\mu3} ^2 \left(1 -  U_{\mu3} ^2\right) = 4\cos^2\theta_{13}\sin^2\theta_{23} \left(1 - \cos^2\theta_{13}\sin^2\theta_{23}\right)$ |
|   | <ul> <li>DUNE / Hyper-K</li> <li>/ IceCube</li> </ul> | $\begin{array}{c} \text{T2K/MINOS} \\ (\nu_{\mu} \rightarrow \nu_{e}) \end{array}$           | $4 U_{e3} ^2 U_{\mu3} ^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$                                                                      |
|   |                                                       | $\begin{array}{c} \text{SK/OPERA} \\ (\nu_{\mu} \rightarrow \nu_{\tau}) \end{array}$         | $4 U_{\mu3} ^2 U_{\tau3} ^2 = \sin^2 2\theta_{23} \cos^4 \theta_{13}$                                                                   |
|   |                                                       | S.                                                                                           | Parke, M. Ross-Lonergan, Phys. Rev. D 93, 113009 (2016                                                                                  |

# **NSIs interfere with Oscillations**



#### interference in oscillations $\sim \epsilon \quad \overleftarrow{\leftarrow} \rightarrow \quad FCNC \text{ effects } \sim \epsilon^2$

M. Lindner, MPIK

Neutrino Twon Meeting @ CERN, Oct. 22-24, 2018

# **NOvA NSI results**

- Measuring disappearance of muon (anti)neutrinos and appearance of electron (anti)neutrinos
- Looking for phase and size of NSI in  $e \rightarrow \mu$  and  $e \rightarrow \tau$



# **NOvA NSI results**

- Impact on PMNS  $\delta_{CP}$
- At single experiment including NSI removes almost all sensitivity to CP violating phase in standard PMNS matrix
  - Effects are degenerate!



# **Multi-experiment NSI**

- T2K neutrinos travel 295km
- DUNE neutrinos travel 1300km
- See different NSI terms have different effects
  - Combining data from multiple experiments allows us to (re)gain sensitivity
  - Many talks next week look at this



### **Recent multi-experiment analyses**

- CMS + ATLAS Higgs combinations
  - Similar detectors and physics but different analysis methods, different model choices, different samples
- T2K + NOvA
  - Similar physics and samples, but very different detectors and analysis methods
- T2K + SK
  - Combined "same" detector but using different physics samples and different analysis methods
- Hopefully we can learn from these experiments!

### Summary

- Next generation of experiments aim for precision neutrino physics
  - Direct searches for new physics, unitarity of PMNS
  - Not clear that there will be any next-to-next gen experiments...
- PMNS unitarity and other BSM searches require combined analysis
  - Need reactor and atmospheric, not just beam
- T2K + NOvA analysis took 8 years from initial discussion until first result
   Combination analyses are hard!
- Goal for workshop:
  - Start (hopefully regular) discussion between experiments to make combinations easier
  - Get ideas for ways to work together in future

# Backups

### **Neutrino cross-section measurements**



Quasi-elastic (QE)

Single pion production (RES)

**Inelastic Scattering** 

- Characterised by particles in final state
  - Only lepton + nucleon = quasi-elastic
  - Single pion = Resonant or coherent pion production
  - Multiple pions = Shallow / deep inelastic scattering

### **Neutrino cross-section measurements**



- High energy DIS dominates, perturbative theories work, data and theory agree
- Lower energy (~1 GeV neutrino energy) data and theory disagree more

### **Neutrino cross-section measurements**

- Neutrino oscillations depend on L(km)/E(GeV)
- Earth-based longbaseline experiments have to have neutrino energies <10 GeV</li>
- Lots of work still to do to understand these crosssections



### **Example – 2p2h interactions**



- Similar to CCQE
- Neutrino interacts with correlated pair of nucleons invisible to detector

### **Example – 2p2h interactions**



- Reconstructed neutrino energy is biased, leads to bias in oscillation parameters
- Requires improved experimental measurements or theoretical models

# **DUNE-PRISM and IWCD/NuPRISM**



- Near / intermediated detectors for DUNE / HK
- Span a range of • angles off the centre of the neutrino beam
  - DUNE-PRISM horizontal, ~35m
    - IWCD vertical,





# **PRISM concept**

- Measure neutrino interactions at multiple off-axis positions
- Neutrino flux changes with position



v beam

# **PRISM concept**

- Measure neutrino interactions at multiple off-axis positions
- Neutrino flux changes with position



# **PRISM benefits - 1**

DUNE study - C. Vilela, G. Yang



Near detector along same axis as far detector

- Tunes MC (red) to match near detector data (green)

# **PRISM benefits - 1**

DUNE study - C. Vilela, G. Yang



- Near detector along same axis as far detector
  - Tunes MC (red) to match near detector data (green)
  - Can associate data-MC differences to wrong model biased oscillation measurement

# **PRISM benefits - 1**

DUNE study - C. Vilela, G. Yang



- Test MC tuning (green) by comparing to data (red) at point further off-axis (left plot)
- Clearly see model does not agree model tuning wrong / model incomplete

all off-axis fluxes

Same detector measuring

Can weight and combine

different off-axis 'slices'



۲



# **PRISM** benefits - 2

- Same detector measuring all off-axis fluxes
- Can weight and combine different off-axis 'slices'
- Produce Gaussian energy distribution

Linear Combination

2.5

2

1.7° Off-axis Flux

1.5



Linear Combination, 1.2 GeV Mean

0

0.5

20<sup>×10<sup>9</sup></sup>

15

10

5

Arb. Norm