

JUNO analysis and future considerations

NuFact 2024

Steven Calvez on behalf of the JUNO collaboration NuFact 2024 September 15th 2024

Jiangmen Underground Neutrino Observatory

• JUNO is a 20-kton Liquid Scintillator neutrino observatory located in Southern China.

Jiangmen Underground Neutrino Observatory

- JUNO is a 20-kton Liquid Scintillator neutrino observatory located in Southern China.
- JUNO studies reactor electron antineutrino **oscillations** over a 52.5 km medium baseline to:

TAO

Determine the **neutrino mass ordering**.

VARAAA AA O

8 reactors

26.6 GW, h

Measure Δm_{31}^2 , Δm_{21}^2 , and $\sin^2 2\theta_{12}$ with sub-percent precision.

 \overline{v}_{e}

52.5km

Large statistics

• Energy resolution: 2.95% @ 1MeV

Low background

Precise knowledge of reactor spectra

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS

- Low background
 - ✓ Material screening, clean environment

Precise knowledge of reactor spectra

- 20kton LS: LAB + 2.5g/L PPO + 3 mg/L bis-MSB → 1665 PE/MeV <u>arXiv:2405.17860</u>
- Osiris: measures radiopurity of LS.

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 ✓ High photon yield, highly transparent LS

- Low background
 - ✓ Material screening, clean environment

• Precise knowledge of reactor spectra

Yangjiang

- Two nuclear power plants
- 8 reactor cores
- 26.6 GW_{th}

Reactor	Power (GW_{th})	Baseline (km)	IBD Rate (day^{-1})	Relative Flux (%)
Taishan	9.2	52.71	15.1	32.1
Core 1	4.6	52.77	7.5	16.0
Core 2	4.6	52.64	7.6	16.1
Yangjiang	17.4	52.46	29.0	61.5
Core 1	2.9	52.74	4.8	10.1
Core 2	2.9	52.82	4.7	10.1
Core 3	2.9	52.41	4.8	10.3
Core 4	2.9	52.49	4.8	10.2
Core 5	2.9	52.11	4.9	10.4
Core 6	2.9	52.19	4.9	10.4
Daya Bay	17.4	215	3.0	6.4

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
- Low background
 - ✓ Material screening, clean environment

• Precise knowledge of reactor spectra

• 17,612 20" PMTs + 25,600 3" PMTs

		LPMT (20	-inch)	SPMT (3-inch)
		Hamamatsu	NNVT	HZC
Quantity		5000	15012	25600
Charge Collection	า	Dynode	MCP	Dynode
Photon Detection Effic	Photon Detection Efficiency		30.1%	25%
Mean Dark Count Rate	Bare	15.3	49.3	0.5
[kHz]	Potted	17.0	31.2	0.5
Transit Time Spread (o) [ns]	1.3	7.0	1.6
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs
Coverage		75%	5	3%
Reference		Eur. Phys. J. (C 82:1168	NIM.A 1005 (2021) 165347

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
 - ✓ Precise calibration
- Low background
 - ✓ Material screening, clean environment

• Precise knowledge of reactor spectra

- Comprehensive calibration strategy:
 - Understand LS non-linearity.
 - Correct for position-dependency.
- Reach <1% syst. uncertainty on energy scale.</p>

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
 - ✓ Precise calibration
- Low background
 - ✓ Material screening, clean environment
 - ✓ 650m or 1800 m.w.e overburden
 - ✓ Efficient veto system (>99.5%)
- Precise knowledge of reactor spectra

- **650m overburden**: 4Hz of cosmic muons in LS
- Top Tracker: <u>NIM A 1057 (2023) 168680</u>
 - Opera plastic scintillator

- Outer Cherenkov Detector:
 - \circ 35 kton ultrapure water
 - 2400 20" PMTs
- Veto strategy :

57 reactor $\overline{\nu_e}$ + 127 ⁹Li + 40 ⁸He events/day

47 reactor $\overline{\nu_e}$ + 0.8 ⁹Li/⁸He events/day

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
 - ✓ Precise calibration
- Low background
 - ✓ Material screening, clean environment
 - ✓ 650m or 1800 m.w.e overburden
 - ✓ Efficient veto system (>99.5%)
- Precise knowledge of reactor spectra
 - ✓ Satellite detector TAO

- TAO can perform a precise measurement of reactor v
 e
 *v*e
 spectrum:
 - \circ 44m from reactor \rightarrow 10³ IBD events per day
 - o 2.8 ton Gd-LS, 1 ton fiducial volume
 - o 4500 PEs/MeV
 - SiPM: 94% coverage with 50% PDE
 - Energy resolution <2% @ 1 MeV</p>
 - Sub-percent shape uncertainty
- Tested at IHEP. Installation at Taishan power plant in 2024. Data taking in 2025.

Updates on JUNO construction

- Support Structure completed.
- Acrylic Vessel :
 - Production complete.
 - o 21/23 layers installed.
- More than half of 20" and 3" PMTs installed.
- Detector completion expected by end 2024.
- > First data taking in 2025.

Physics searches with JUNO

JUNO's design enables a rich physics program.

Core Collapse Supernova

Diffuse Supernova v Background

12

Jubatech JUNO

Reactor neutrino oscillations

- 47 Inverse Beta Decay events per day expected:
 - Prompt + delayed signals to strongly suppress backgrounds.
 - o 7% backgrounds, mostly below 3MeV.
 - \circ ~10⁵ IBD candidates in 6 years.
 - Machine learning reconstruction algorithms help reach excellent energy resolution (<3% @ 1 MeV).

Precision measurement of neutrino oscillations parameters

- Most precise measurements of half of the neutrino oscillation parameters in 100 days.
- Ultimately, an order of magnitude improvement over current knowledge of Δm²₃₁, Δm²₂₁, and sin²θ₁₂.

<u>Chin.</u>	Phys.	<u>C 46 (</u>	(<u>2022</u>)) 12
			· · · · · · · · · · · · · · · · · · ·	

	Central Value	PDG2020	100 days	6 years	20 years
$\Delta m_{31}^2 \; (\times 10^{-3} \; \mathrm{eV^2})$	2.5283	±0.034 (1.3%)	±0.021 (0.8%)	±0.0047 (0.2%)	±0.0029 (0.1%)
$\Delta m_{21}^2 \; (\times 10^{-5} \; \mathrm{eV}^2)$	7.53	±0.18 (2.4%)	±0.074 (1.0%)	±0.024 (0.3%)	±0.017 (0.2%)
$\sin^2 \theta_{12}$	0.307	±0.013 (4.2%)	±0.0058 (1.9%)	±0.0016 (0.5%)	±0.0010 (0.3%)
$\sin^2 \theta_{13}$	0.0218	±0.0007 (3.2%)	±0.010 (47.9%)	±0.0026 (12.1%)	±0.0016 (7.3%)

Precision measurements

• After 6 years, the measurements of:

• Δm_{21}^2 and $\sin^2\theta_{12}$ are systematics-limited.

• Δm_{31}^2 and $\sin^2\theta_{13}$ remain statistics-limited.

Chin. Phys. C 46 (2022) 12

 $\times 10^{3}$ 100 . 6 years of data taking No oscillations Only solar term Normal ordering 80 Inverted ordering Events per 1 MeV 60 $\sin^2 2\theta_{12}$ $\sin^2 2\theta_{13}$ 20 Δm_2^2 Δm_{22}^2 5 6 7 8 2 3 4 9 $E_{\overline{\nu}_e}$ (MeV)

Chin. Phys. C 46 (2022) 12

Δm_{31}^2 Ĵ **Fast oscillation pattern** Precise knowledge of spectrum shape ×10³ 100 F 6 years of data taking No oscillations Only solar term Normal ordering 80 Inverted ordering Events per 1 MeV 60 $\sin^2 2 heta_{12}$ 40 $\sin^2 2\theta_{13}$ 20 Δm^2_{21} Δm^2_{32} °ò 2 3 4 5 6 7 8 9 1

Δm_{31}^2	1σ (%)		Δm_{21}^2		
Statistics	0.17		Statistics		
Reactor:			Reactor:		
- Uncorrelated	< 0.01		- Uncorrelated	0.01	
- Correlated	0.01		- Correlated		
- Reference spectrum	0.05		- Reference spectrum		
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07	
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14	
Detection:			Detection:		
- Efficiency	0.01		- Efficiency		
- Energy resolution	< 0.01		- Energy resolution	0.01	
- Nonlinearity	0.04		- Nonlinearity	0.05	
- Backgrounds	0.04		- Backgrounds		
Matter density	0.01		Matter density		
All systematics	0.08		All systematics	0.27	
Total	0.19		Total	0.32	
		%			
		%			
$\sin^2 \theta_{12}$	1σ (%)	%		lσ (%)	
$\sin^2 heta_{12}$ Statistics	1σ (%) 0.34	%		1σ (%) 8.94	
sin ² $ heta_{12}$ Statistics Reactor:	1σ (%) 0.34	%	$\sin^2 \theta_{13}$ Statistics Reactor:	1σ (%) 8.94	
sin ² 0 ₁₂ Statistics Reactor: - Uncorrelated	1σ (%) 0.34 0.10	%	sin ² $ heta_{13}$ Statistics Reactor: - Uncorrelated	1σ (%) 8.94 2.53	
Sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated	1σ (%) 0.34 0.10 0.27	%	sin ² $ heta_{13}$ Statistics Reactor: - Uncorrelated - Correlated	1σ (%) 8.94 2.53 6.83	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum	1σ (%) 0.34 0.10 0.27 0.09	%	Sin ² $ heta_{13}$ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum	1σ (%) 8.94 2.53 6.83 3.48	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	1σ (%) 0.34 0.10 0.27 0.09 0.05	%	Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	1σ (%) 8.94 2.53 6.83 3.48 1.55	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium	1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10	%	sin ² θ ₁₃ Statistics Reactor: Uncorrelated Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	1σ (%) 0.34 0.00 0.27 0.09 0.05 0.10	%	sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	1σ (%) 0.34 0.0 0.10 0.27 0.09 0.05 0.10 0.23	%	Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	1σ (%) 0.34 0.0 0.10 0.27 0.09 0.05 0.10 0.10 0.23 0.01	%	Sin ² Ø ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Spent Nuclear Fuel - Shon-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity	1σ (%) 0.34 0.10 0.27 0.09 0.10 0.05 0.10 0.10 0.05 0.010 0.10 0.10 0.010 0.010 0.023 0.011 0.09	%	Sin ² θ ₁₃ Statistics Reactor: Uncorrelated Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Spent Nuclear Fuel - Sone-quillibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds	1σ (%) 0.34 0.10 0.27 0.09 0.10 0.10 0.23 0.10 0.10 0.05 0.10 0.10 0.10 0.10 0.23 0.01 0.02 0.09 0.20	%	Sin ² θ ₁₃ Statistics Reactor: Correlated Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Cofficiency Energy resolution Nonlinearity Backgrounds	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	1σ (%) 0.34 0.10 0.27 0.09 0.10 0.10 0.23 0.10 0.10 0.09 0.05 0.10 0.10 0.10 0.23 0.10 0.23 0.01 0.23 0.01 0.02 0.20 0.20	%	Sin ² θ ₁₃ Statistics Reactor: Uncorrelated Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Efficiency Efficiency Backgrounds Matter density	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Efficiency - Efficiency - Shonimearity - Backgrounds Matter density All systematics	1σ (%) 0.34 0.10 0.27 0.09 0.10 0.10 0.23 0.10 0.10 0.09 0.010 0.10 0.10 0.10 0.23 0.01 0.23 0.01 0.23 0.01 0.20 0.021 0.20 0.07 0.40	%	Sin ² θ ₁₃ Statistics Reactor: Uncorrelated Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Efficiency Efficiency Efficiency Shonlinearity Backgrounds Matter density All systematics	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.94 0.94	%

 $E_{\overline{\nu}_e}$ (MeV)

∆m²₂₁ ↓ Position of maximum disappearance ↓ Low energy backgrounds (geoneutrinos, accidentals, etc.)

<u>Ch</u>	in. Phys. C	46 (2022) 12	
		Δm_{21}^2	1σ (%)
		Statistics	0.16
		Reactor:	
< 0.01		- Uncorrelated	0.01
		- Correlated	0.03
		- Reference spectrum	0.07
< 0.01		- Spent Nuclear Fuel	0.07

- Non-equilibrium

- Energy resolution

- Nonlinearity

- Backgrounds

Matter density

All systematics

Detection: - Efficiency 0.14

0.02

0.01

0.05

0.18

0.27

		0.1 %		0.0	0.2
$\sin^2 \theta_{12}$					
	0.34			8.94	
			Reactor:		
				2.53	
				6.83	
				3.48	
				1.55	
- Non-equilibrium			- Non-equilibrium	2.65	
- Efficiency			- Efficiency		
	0.01			0.39	
- Nonlinearity			- Nonlinearity	2.09	
				4.89	
Matter density			Matter density		
	0.40			8.16	
	0.52			12.11	

sin²θ₁₃ and sin²θ₁₃ ↓ Normalization factors ↓ Reactor flux, detector efficiency, etc.

Chin. Phys. C 46 (2022) 12 1σ (%) Δm²₂₁ 1σ (%) 0.17 Statistics 0.16 <0.01</td> Hororelated 0.01 0.01 Correlated 0.03

			All systematics	
	0.19			
		0.0 0.1		
		%		
$sin^2 \theta_{12}$	1σ (%)		$sin^2\theta_{13}$	1σ (%)
Statistics	0.34		Statistics	8.94
Reactor:			Reactor:	
- Uncorrelated	0.10		- Uncorrelated	2.53
- Correlated	0.27		- Correlated	6.83
- Reference spectrum	0.09		- Reference spectrum	3.48
- Spent Nuclear Fuel	0.05		- Spent Nuclear Fuel	1.55
- Non-equilibrium	0.10		- Non-equilibrium	2.65
Detection:			Detection:	
- Efficiency	0.23		- Efficiency	5.81
- Energy resolution	0.01		- Energy resolution	0.39
- Nonlinearity	0.09		- Nonlinearity	2.09
- Backgrounds	0.20		- Backgrounds	4.89
Matter density	0.07		Matter density	0.98
All systematics	0.40		All systematics	8.16
Total	0.52		Total	12.11
	. (0.0 0.2 0.4		
		%		

5

%

10

0

Main systematics uncertainties in JUNO's reactor analysis are not common with accelerator and atmospheric experiments.

Chin. Phys. C 46 (2022) 12

Δm_{31}^2	1σ (%)		<u> </u>	10 (70)	1		
Statistics	0.17		Statistics	0.16			
Reactor:			Reactor:				
- Uncorrelated	< 0.01		- Uncorrelated	0.01			
- Correlated	0.01		- Correlated	0.03			
- Reference spectrum	0.05		- Reference spectrum	0.07			
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07			
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14			
Detection:			Detection:				
- Efficiency	0.01		- Efficiency	0.02			
- Energy resolution	< 0.01		- Energy resolution	0.01			
- Nonlinearity	0.04		- Nonlinearity	0.05			
- Backgrounds	0.04		- Backgrounds	0.18			
Matter density	0.01		Matter density	0.01			
All systematics	0.08		All systematics	0.27			
	_			0.00		_	
Total	0.19 0.	0 0.1 %	Total	0.32 ().0 7	0.2 %	2
Total	0.19	.0 0.1 %	Total	0.32	0.0	0.2 %	2
Total sin ² $ heta_{12}$	0.19 0. 1σ (%)	.0 0.1 %	sin ² θ_{13}	0.32 (1σ (%)	0.0	0.: %	2
Total sin ² θ_{12} Statistics	0.19 0. 1 <i>σ</i> (%) 0.34	0 0.1 %	Total $\sin^2 \theta_{13}$ Statistics	0.32 (1σ (%) 8.94	D.0	0.3 %	2
Total sin ² θ ₁₂ Statistics Reactor:	0.19 0 1 <i>o</i> (%) 0.34	0 0.1 %	Statistics Reactor:	0.32 (1σ (%) 8.94	0.0	0.2	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated	0.19 0 1σ (%) 0.34 0.10	0 0.1 %	Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated	0.32 (1σ (%) 8.94 2.53	0.0	0.:	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated	0.19 0 1σ (%) 0.34 0.10 0.27	0 0.1 %	Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated	0.32 1σ (%) 8.94 2.53 6.83 0.12		0.:	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum	0.19 0 10 (%) 0.34 0.10 0.27 0.09		Total Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum	0.32 1σ (%) 8.94 2.53 6.83 3.48		0.:	2
Sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	0.19 0 1σ (%) 0.34 0 0.10 0.27 0.09 0.05 0.10		Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55		0.:	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium	0.19 0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10		Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium 2 control	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65		0.:	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	0.19 0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10		Total Sin ² θ_{13} Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65		0.:	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	0.19 0 107 (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23		Total Sin ² θ_{13} Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81		0.:	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	0.19 0 10 (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23 0.23 0.01		Total Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 0.39		0.:	2
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Efficiency - Energy resolution - Nonlinearity	0.19 0 10 (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23 0.10 0.23 0.01 0.09		Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09		0.:	
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Efficiency - Energy resolution - Nonlinearity - Backgrounds	0.19 0 10 (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23 0.01 0.23 0.01 0.09 0.20		Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89		0.:	
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	0.19 1σ (%) 0.34 0 0.10 0.27 0.09 0.05 0.10 0.23 0.10 0.23 0.01 0.23 0.01 0.23 0.01 0.20 0.07		Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98		0.:	
Total sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density All systematics	0.19 0 107 (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23 0.01 0.09 0.20 0.20 0.07 0.40		Total Sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density All systematics	0.32 1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98 8.16		0.1.1	

Determination of the neutrino mass ordering

- JUNO sensitivity to the neutrino mass ordering: <u>arxiv:2405.18008</u>
 - Updated signal and background rates
 - Improved predicted energy resolution arXiv:2405.17860
 - JUNO+TAO combined analysis
- > JUNO reactor neutrino oscillation analysis alone provides a median 3σ sensitivity to NMO in 6.5-7 years!

Determination of the neutrino mass ordering

- Main systematic uncertainties in the NMO analysis come from the spectrum shape.
 - 20 Uncertainty $|\Delta\chi^2_{min}|$ |∆_{X²nin}| 10 Exposure 6.5 years Statistics (JUNO+TAO) 11.5 + reactor and response -0.74.Õ + TAO unc. -0.63.8 + JUNO geoneutrinos -0.53.6 3.4 3.2 3.0 3.0 2.8 8.2 + JUNO world reactors -0.3+ JUNO accidentals -0.2+ JUNO ⁹Li/⁸He -0.12.6 + JUNO other bkg. -0.05 2.4 **Full systematics** 9.0 2.2 8 10 12 0 2 6 2.0 2 Δ
- NMO sensitivity highly dependent on energy resolution.

Atmospheric neutrino oscillations

- First time atmospheric neutrino oscillations will be studied with liquid scintillator:
 - \circ e / μ separation
 - $\circ \nu / \overline{\nu}$ separation
 - o Neutrino energy

 \bigcirc

- Track direction Phys.Rev.D 109 (2024) 5, 052005
- Plan to install all **spare PMTs** on top of water pool to further **improve PID** and **direction reconstruction**.
- Combination with reactor analysis in progress to boost JUNO's NMO sensitivity.

J. Phys. G: Nucl. Part. Phys. 43 030401

Solar neutrinos

• JUNO sensitive to both high and intermediate energy solar neutrinos.

High energy solar neutrinos

- Model independent detection of ⁸B neutrinos via three interaction channels CC, NC and ES:
 - > 5% uncertainty on ⁸B neutrino flux
 - > 20% uncertainty on Δm^2_{21}
 - > 8% uncertainty on $sin^2\theta_{12}$

	Channels	Threshold	Signal	Event nu	mbers
		[MeV]		$[200 \text{ kt} \times \text{yrs}]$	after cuts
CC	$\nu_e + {}^{13}\text{C} \to e^- + {}^{13}\text{N}(\frac{1}{2}; \text{gnd})$	$2.2 { m MeV}$	$e^-+^{13}N$ decay	3929	647
NC	$\nu_x + {}^{13}\text{C} \to \nu_x + {}^{13}\text{C}(\frac{3}{2}; 3.685 \text{MeV})$	$3.685~{ m MeV}$	γ	3032	738
\mathbf{ES}	$\nu_x + e \rightarrow \nu_x + e$	0	e^-	$3.0{ imes}10^5$	$6.0{ imes}10^4$

Astrophys. J. 965.2: 122 (2024)

Future considerations

- JUNO is paving the way towards a precision era in neutrino physics.
 - Precision tests of models: non unitarity of PMNS, new physics, etc.
- JUNO's high-precision measurements and determination of the NMO will profoundly impact the field:
 - Will inform the neutrinoless double beta decay program.
 - Unique and complementary measurements through vacuum neutrino oscillations.
 - Will allow accelerator and atmospheric experiments to better constrain the parameter space: δ_{CP} and θ_{23} .
 - Little overlap in systematic uncertainties makes combining measurements easier.
 - Comparing precision measurements of Δm^2_{31} in the electron and muon neutrino disappearance channels can boost the NMO sensitivity.

Conclusions

- Multipurpose 20-kton Liquid Scintillator neutrino observatory with a **rich physics program**.
- JUNO detector construction well underway: first data next year!
- > JUNO will measure Δm_{31}^2 , Δm_{21}^2 , and $\sin^2\theta_{12}$ with unprecedented accuracy <0.5%.
- > JUNO can determine the
 Neutrino Mass Ordering at 3σ significance in 6.5 years.

76 institutes, 18 countries, >700 collaborators

Backup

Synergy between JUNO, NOvA, T2K, IceCube/PINGU, KM3NeT/ORCA

- Complementarity and synergy between reactor, accelerator and atmospheric experiments.
- Early 5σ NMO sensitivity possible by combining:
 - > JUNO and NOvA/T2K's measurements:
 - See J. Phys. G 43, 030401, Phys. Rev. D 72,013009, Phys. Rev. D 88, 013008, Sci Rep 12, 5393, arXiv:2404.08733.
 - > JUNO and IceCube/KM3NeT's measurements:

• See <u>Phys. Rev. D 101, 032006</u>, <u>JHEP 03, 2022, 055</u>

significance (σ)

TAO

- Best precision (subpercent) on reactor neutrino spectrum shape: useful for other experiments and nuclear databases.
- Sensitive to reactor spectra fine structure.
- TAO can search for sterile neutrinos.

Intermediate energy solar neutrinos

- Possible thanks to radiopurity efforts.
- World leading constraints after a few years.
- Day/Night asymmetry sensitivity <1%.

⁷Be v

pep v

¹³N-v

¹⁵O-v

IBD radiopurity

Ideal radiopurity

BX-like radiopurity

Baseline radiopurity

10⁷

 10^{6}

10⁵

10⁴ 10³

10²

Events / p.e.

Proton decay

- $\mathbf{p} \rightarrow \overline{\mathbf{v}} \mathbf{K}^+$: three-fold coincidence to detect proton decay with high efficiency (36.9%).
- Good energy resolution helps reduce the backgrounds: less than 0.2 events after 10 years.
- Competitive limit on proton lifetime of
 9.6 × 10³³ years for 200 kton-year exposure.
- More details in <u>Chin.Phys.C 47 (2023) 11, 113002</u>

Core collapse supernova neutrinos

- Multiple core collapse supernova neutrinos detection channels.
- Sensitive to all flavors via CC + ES channels.
- Can detect neutrinos and alert hours before supernova explosion.
- Can study supernova neutrinos after explosion.

Process	Num. Events (E _{thr} = 0.2MeV)
<u>IBD</u> $\overline{ u}_e + p ightarrow e^+ + n$	~5000
<u>pES</u> $ u + p ightarrow v + p$ (' $\overline{ u}_{e,\mu, au}^{'}$)	~2000
eES $\nu + e \rightarrow \nu + e$ ($(\vec{\nu}_{e,\mu,\tau})$)	~400
CC $ \tilde{\nu}_{e}^{\flat} + {}^{12}C \to e^{-(+)} + {}^{12}N({}^{12}B)$	~200
NC $\nu + {}^{12}C \rightarrow \nu + {}^{12}C^* ({}^{'}\overline{\nu}^{}_{e,\mu,\tau}) \rightarrow \gamma(15.11 \text{MeV})$	~300

DSNB

- **DSNB** 2-4 per year (w/o PSD)
- 3σ discovery potential in 3 years (reference model).
- See <u>Universe 2022, 8, 181</u>

Geoneutrinos

- Decay of **radionuclides** (U/Th/K) within the Earth.
- **Geoneutrinos**: 400 $\overline{\nu_e}$ per year (0-3MeV)
 - More than Borexino and KamLAND combined in 1 year. To date, Borexino + KamLAND = ~200 events.
- Measure U and Th abundances, U/Th ratio in crust and mantle : 30% uncertainty in 10 years.
- Probes : Earth's formation, Mantle convection, Plate tectonics, Earth's magnetic field production

