Neutrino Oscillation Analysis with Combined Data from Super-Kamiokande and T2K

Daniel Barrow

daniel.barrow@physics.ox.ac.uk

NuFACT Satellite Workshop

15th September 2024

Experiments

Super-Kamiokande (SK): 50 kton water Cherenkov detector:

- Measure atmospheric neutrinos with large neutrino energy and baseline range
- Good separation of electrons and muons
- No event-by-event neutrino/antineutrino separation

Tokai-to-Kamioka (T2K): Long baseline (L=295km) beam oscillation experiment:

- Primary $v_{\mu}/\overline{v_{\mu}}$ beam peaked at $E_{\nu} = 0.6$ GeV/c
- Near detectors used to constrain flux and cross-section uncertainties
- Far detector oscillated measurement uses SK

Oscillations in T2K

Oscillation probability for T2K:

- Baseline, L = 295 km
- Flux peak at 0.6GeV

Disappearance probability $(v_{\mu} \rightarrow v_{\mu})$: • $\sin^2 2\theta_{23}$ modulates amplitude

- Frequency of oscillation ~ $|\Delta m^2_{23}|$

 δ_{CP} modifies neutrino/antineutrino appearance $(v_{\mu} \rightarrow v_{\rho})$ probability:

- Circular modulation over 2π period
- Asymmetric effect

Oscillations in T2K

TZK

Daniel Barrow

NuFACT Satellite Workshop - 15th Sept 2024

Atmospheric Oscillations in SK

SK has discriminating power of mass ordering due to resonant-induced matter effects between 2 and 10 GeV in upgoing-neutrinos [cos(zenith) < 0]:

- Enhancement of v in NO; enhancement of \overline{v} in IO
- Amplitude of effect depends on $\sin^2\theta_{23} \rightarrow \text{sensitive to } \theta_{23}$ octant

Atmospheric neutrino oscillation probability (normal ordering)

Atmospheric Oscillations in SK

SK has limited sensitivity to δ_{CP} through the normalisation of sub-GeV e-like events:

- Overall normalisation due to detector energy and angular resolution
- More v_e events at $\delta_{CP} \sim 220^\circ$, fewer at $\delta_{CP} \sim 40^\circ$

Joint Analyses

TZR

Total Accumulated POT for Physics

v-Mode Beam Power

v-Mode Accumulated POT for Physics

 \overline{v} -Mode Accumulated POT for Physics

Two joint analyses released in 2023:

- T2K (beam) + NOvA (beam) \rightarrow See the previous talks
- T2K (beam) + SK (atmospherics) → <u>Arxiv 2405.12488</u>
 - T2K data (5 samples) POT: 3.6x10²¹ <u>Eur. Phys. J. C 83, 782</u>
 - SK-IV data (18 samples) 3244 days PTEP 2019 5, 054F01

Motivation of T2K+SK Joint Analysis

Combining experiments should provide us with:

- Better sensitivity to oscillation parameters and mass ordering due to increased stats
- SK helps break degeneracy between $\delta_{\rm CP}$ and mass ordering in T2K
- T2K can constrain $\sin^2\theta_{23}$ better \rightarrow improve sensitivity to **mass ordering** in SK

Both experiments have overlapping energy spectrum:

Analysis Methodology in Joint Analysis

Neutrino Flux Modelling

Flux uncertainty ~6% at peak of spectrum:

• External hadron production data (e.g NA61) No correlations included in flux modeling

Use downgoing neutrino (un-oscillated) flux to control the flux uncertainties

Large overlap in the neutrino energy range

Cross Section Modelling

Interaction model:		
Interaction Model Summary		
	"Low-energy" samples SK FC sub-GeV and T2K	"High-energy" samples SK FC multi-GeV, PC, Upmu
Charged Current Quasi-Elastic (CCQE)	T2K model with ND280 constraint, correlated in low-E/highE (except for high-Q ² parameters)	
	high-Q² params w/ND280	high-Q² params w/o ND
	+ extra ν_e/ν_μ xsec diff. error	
Two particles two holes (CC2p2h)	T2K model w/ND280	SK model (100% error) + T2K-style shape error
Resonant Interactions	T2K model w/ND280 + new p_{π} shape uncertainty + extra NC1 π^0 uncertainties	SK model for 3 dials also in T2K model, use more recent, larger T2K priors
Deep inelastic	T2K model w/ND280	SK model
Tau neutrino interactions	SK model (25% normalization error) correlated in low-E/highE	
Final State Interactions	T2K model w/ND280	T2K model w/o ND280 (mostly same as SK model)
Secondary Interactions	T2K model, correlated in low-E/high-E not applied to SK Upmu samples	

Correlated in beam and low energy atmospherics: NEUT

• High energy uses SK model

Daniel Barrow

Low energy interactions dominated by CCQE:

- Significant 2p2h and resonant contributions
- Mis-modelling may bias neutrino energy reconstruction - <u>Near Detector constraint</u>

NuFACT Satellite Workshop - 15th Sept 2024

Correlated detector model developed in joint analysis:

- Larger range in energy in SK
- Larger number of multi-ring events
- Better constraint of the uncertainties

Based on SK model, with additional beam uncertainties added for T2K part

ND280 Fit

18 Samples based on:

- Horn current
- Target (CH/H₂O)
- Number of pions and protons

Tune and reduce flux and cross-section uncertainty:

Daniel Barrow

NuFACT Satellite Workshop - 15th Sept 2024

T2K Beam Selections

5 samples, split by:

- Beam configuration
- Electron/Muon PID
- Number of decay electrons

3.6x10²¹ Protons on Target

- 55%:45% split in $v:\overline{v}$
- Consistency shows good agreement between SK and T2K samples:
 - Agreement between systematic parameters favored by the two datasets, p-val = 0.24

SK Atmospheric Samples

18 SK atmospheric samples with 3244.4 days of data taking:

Multi-GeV samples:

• Sensitive to mass ordering and θ_{23} octant

Sub-GeV samples:

• Electron CCQE-like sample normalisation sensitive to $\delta_{\rm CP}$

Upward going muons:

• Sensitive to $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$ due to v_{μ} disappearance

Daniel Barrow

NuFACT Satellite Workshop - 15th Sept 2024

Oscillation Parameter Measurements

Robustness Studies

Predict potential biases from out-of-model effects

- Test 14 alternative models or data-driven effects to estimate the bias
- Biases on Δm_{32}^2 are included via Gaussian smearing

Example: Excess in down-going (un-oscillated) atmospheric data after applying ND constraints

T2K+SK Oscillation Analysis Results

Slight preference for normal ordering:

- Bayes factor B(NO/IO) = 8.98
- Normal ordering preferred, with **p-value** for IO = **0.08**
 - Corresponds to 1.2σ deviation using one-sided test

T2K+SK Oscillation Analysis Results

T2K+SK Oscillation Analysis Results

Different octant preference by each experiment:

- Combined analysis: Bayesian posterior probability prefers UO (0.64)
- Corresponds to ~0.9 σ fluctuation of LO

Distribution of the θ_{23} Octant test statistic Data=-0.37 Fraction of pseudo data sets $_{-0}^{-1}$ True lower octant True higher octant p(lower)=0.61p(higher)=0.11 10^{-4} -20-1010 20 0 χ^2 (lower) – χ^2 (higher)

P-value (CLs) for UO from Frequentist analysis is 0.11 (0.28)

• **Conclusion**: no obvious preference for octant

First joint oscillation analysis of T2K beam + SK atmospheric neutrinos has been performed:

Both Bayesian and Frequentist results provided, with additional robustness studies:

- Limited rejection of inverse hierarchy at 90% CL
- Charge-Parity conservation rejected between 1.9σ and 2.0σ exclusion
- No preference on the θ_{23} octant

Potential for future updates:

- SKIV (3244.4 days) \rightarrow SKI to SKV (6511.3 days)
- T2K Run 1-10 \rightarrow Run 1-11 (10% increase in *v*-mode data)
- Updates to flux and interaction models

Results from the analysis presented in Arxiv 2405.12488

Backup Slides

Neutrino Oscillations

Long baseline accelerator (LBL) experiments:

- <u>Make</u> the most precise measurements of θ_{23} , $|\Delta m^2_{32}|$
- Sign of $|\Delta m_{32}^2|$ and δ_{CP} still unknown and accessible to LBL

Neutrino Flux

u-mode

 $\bar{\nu}$ -mode

Neutrino Flux Uncertainties

T2K Experiment

High intensity neutrino(antineutrino) beam produced at **J-PARC**:

• Use <u>Near</u> and <u>Far</u> detector

Beamline

30 GeV proton beam extracted onto graphite target:

• p+C interactions produce hadron beam (π^{\pm} and K^{\pm})

Hadrons focused by 3 electromagnetic horns:

- Focusing π^+ produces v_{μ} via $\pi^+ \rightarrow \mu^+ + v_{\mu}$
- Changing horn current produces antineutrino beam

Off axis technique produces narrow-band beam

Near Detector (ND280)

Measure beam spectrum and flavour composition pre-oscillation:

- 0.2T magnetic field
- Electromagnetic calorimeter to distinguish showers/tracks
- 2 Fine Grain Detectors (FGDs): Primary neutrino target
- 3 Time Projection Chambers (TPCs): Reconstruct momentum, charge and PID
- Recent upgrades (SFGD, high-angle TPCs, time of flight): Not used within analyses shown

Super Kamiokande (SK)

Large underground 50 kton water Cherenkov detector:

- ~11k 20" PMTs in the inner detector
- ~2k 8" PMTs in the outer detector, used as veto

Doped with 0.03% Gd in 2022 for improved neutron tagging efficiency: <u>Not</u> used within analyses shown

Sample Breakdown

