Event-activity dependence of heavy-flavor production at the ALICE experiment

Róbert Vértesi vertesi.robert@wigner.hu HUN **WIGNER** WILL MITA

This work has been supported by the Hungarian NKFIH OTKA FK131979 as well as the NKFIH 2021-4.1.2-TÉT-2022-00034 grants

Small collision systems

- **Nature Phys. 13 (2017) 535 Phys. Rev. Lett. 123 (2019) 142301**Ratio of yields to $(\pi^+\pi^-)$ $\frac{1}{s}$ $\frac{1}{s}$ 0.1 呻 $2K_c^0$ 0.08 m 0.06 **ODD** 0.04 5.44 5.02 $\sqrt{s_{\rm esc}}$ (TeV) $\Lambda + \overline{\Lambda}$ (×2) 0.02 IP-Glasma+MUSIC+UrOMD PYTHIA 8 ith $\frac{20}{5004}$ (h) $\Xi^{-} + \Xi^{+}$ (×6) </u> $\frac{2}{5}$ 0.03 10^{-2} Ω^- + $\overline{\Omega}^+$ (×16) **ALICE** pp. \sqrt{s} = 7 TeV $\frac{2}{3}$ 0.08 p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV Pb-Pb, $\sqrt{s_{NN}}$ = 2.76 TeV 0.06 PYTHIA8 0.04 DIPSY 5.44 5.02 $\sqrt{s_{\text{max}}}$ (TeV) 0.02 **EPOS LHC** $n\Box$ open = without n-subevent $v_3[6]$ solid = with η -subevent $\frac{23}{8}$ ▼ ∇ v_2 {8} 10^{-3} $10²$ 10 10^{2} $\left\langle dN_{\text{ch}}/d\eta\right\rangle_{|\eta|<\,0.5}$ ALI-PUB-106878
- **High-multiplicity pp collisions:** similar signatures to those observed in heavy-ion collisions where the formation of a quark-gluon plasma (QGP) is expected:
- **Strangeness enhancement**
- Long-range multiparticle correlations, "**flow**"

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity

 N_{ch} (|n| < 0.8)

 $\{2, |\Delta n| > 1.4\}$

 v_s (2. $|\Delta n| > 1.0$)

 $0.2 < p < 3.0$ GeV/c

 $\sqrt{2}$, $|\Delta \eta| > 1.0$

 $m < 0.8$

 $10³$

Small collision systems

- **High-multiplicity pp collisions:** similar signatures to those observed in heavy-ion collisions where the formation of a quark-gluon plasma (QGP) is expected:
- **Strangeness enhancement**
- Long-range multiparticle correlations, "**flow**"
- **Is there a quark-gluon plasma in pp collisions?**
- Or are vacuum-QCD effects responsible for this behavior

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity

Heavy-flavor w.r.t. event activity

 QGP-like effects may be generated by complex vacuum-QCD processes such as multiple-parton interactions (MPI) with color reconnection (CR)

Heavy-flavor w.r.t. event activity

 QGP-like effects may be generated by complex vacuum-QCD processes such as multiple-parton interactions (MPI) with color reconnection (CR)

- **Heavy-flavor** quarks work as hard probes down to low p_T => **pQCD benchmark**
- Measuring the dependence of heavy-flavor production charged-hadron multiplicity and event activity allows for the investigation of:
	- Collective-like effects from small to large systems
	- Interplay between the hard and soft particle production
	- Role of multiparton interactions in heavy-quark production
	- Charm fragmentation across different collision systems

The ALICE experiment (Run-2)

The ALICE experiment (Run-2)

Reconstruction of heavy flavor decays

Semileptonic decays

- $c,b \rightarrow \mu$ $c, b \rightarrow e$ Bueve **Hadronic decays** 800 (in measurements shown) • $D^0 \rightarrow K^- \pi^+$ $K^ \pi^+$ • D^* \rightarrow D^0 $(\rightarrow$ $K^ \pi^+$) π^+ • $D^+ \rightarrow K^- \pi^+ \pi^+$ • $D_s^+ \rightarrow \Phi(\rightarrow K^+ K^-) \pi^+$ • $\Lambda_c^+ \rightarrow p K^- \pi^+$ • $\Lambda_c^+ \to pK^0{}_s(\to \pi^+\pi^-)$ $\bullet \quad \Xi_c^0 \to \Xi^-\pi^+$
	- $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

Reconstruction of heavy flavor decays

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity **CHACK AND THE SET ALICE HEAV** 9

Reconstruction of heavy flavor decays

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity entertainment and the 10

Heavy-flavor production vs. multiplicity

Steeper-than-linear dependence of self-normalized yields on multiplicity at √*s* = 13 TeV

- Strong constraints for models
- Sensitive to autocorrelation: good simultaneous description of jets and UE needed

Heavy-flavor production vs. multiplicity

Steeper-than-linear dependence of self-normalized yields on multiplicity at √*s* = 13 TeV

- Strong constraints for models
- Sensitive to autocorrelation: good simultaneous description of jets and UE needed

Performance of models:

- **PYTHIA 8 with MPI** (pQCD-based with PS and Lund fragmentation) adequately describes data
- **EPOS** parton model with hydrodynamic evolution captures trends

PYTHIA: Comput.Phys.Commun. 191 (2015) 159 EPOS: Nucl.Phys.B Proc.Suppl. 175 (2008) 81 CGC 3 pomeron: PRD 101 (2020) 094020

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity and the contract of the contract of the 12

Transverse spherocity So

Event-shape observable to express jettyness vs. isotropy

$$
S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\vec{p}_{\text{Ti}} \times \hat{n}|}{\sum_i p_{\text{Ti}}} \right)^2
$$

- Sensitive to initial hard scatterings and underlying event
- **Jetty events** $(S_0 \rightarrow 0)$ dominated by hard QCD processes
- **Isotropic events** $(S_0 \rightarrow 1)$ dominated by soft QCD processes

D-meson self-normalized yields vs. S₀

- Hint of an enhanced D-meson production toward higher multiplicity in jetty events
- Effect of hard scatterings leading to average increase in charged-particle multiplicity

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity and the contract of the contract of the 14

Transverse event activity R_T

• Event-activity observable representing the underlying event (UE)

$$
R_{\rm T} = \frac{N_{\rm T}^{\rm ch}}{\langle N_{\rm T}^{\rm ch} \rangle}
$$

 N_T ^{ch} : event multiplicity in the transverse region

- $High-p_T$ leading particle required
- **Toward** and **Away** regions typically contain the leading and subleading jet
- **Transverse** region is mostly independent of the hard scattering process for leading particle $p_T > 5$ GeV/c, and mostly contains the UE
	- R_{T} < 1 : low underlying-event activity
	- R_T > 1 : high underlying-event activity
- In models with multiple-parton interactions (MPI), R_T is strongly correlated with the number of MPIs

D-meson production vs. R_T

- Statistics allowed measurement only in **Toward** region:
	- $-$ High p_T : D^o-meson production is independent of transverse activity – these hadrons are produced in connection to the leading process
	- Low p_T : a hint of transverse-activity dependence
	- PYTHIA 8 with Monash and CR-BLC mode 2 tunes describes the data within uncertainties

D-meson production vs. R_T

- Statistics allowed measurement only in **Toward** region:
	- $-$ High p_T : D^o-meson production is independent of transverse activity – these hadrons are produced in connection to the leading process
	- Low p_T : a hint of transverse-activity dependence
	- PYTHIA 8 with Monash and CR-BLC mode 2 tunes describes the data within uncertainties
- **Transverse** region:
	- PYTHIA 8 with Monash and CR-BLC Mode 2 tunes suggests dependence on transverse activity at any p_T
	- Heavy-flavor production is strongly influenced by UE
- **The expected Run 3 luminosity will make it feasible to measure D-meson production in the transverse region**

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003

Heavy flavor fragmentation

- Production of heavy-flavor hadrons:
	- Parton distribution functions (PDF)
	- Hard scattering process
	- **Fragmentation**
- Factorization hypothesis: these 3 are independent!

$$
\sigma_{hh\to H} = f_a(x_1, Q^2) \otimes f_b(x_2, Q^2) \otimes \sigma_{ab\to q\overline{q}} \otimes D_{q\to H}(z_q, Q^2)
$$

Feynman-x:

$$
x_i = p^A / p^A_{\parallel,\text{max}}
$$

O: momentum transfer

Heavy flavor fragmentation

- Production of heavy-flavor hadrons:
	- Parton distribution functions (PDF)
	- Hard scattering process
	- **Fragmentation**
- Factorization hypothesis: these 3 are independent!

$$
\sigma_{hh\to H} = f_a(x_1, Q^2) \otimes f_b(x_2, Q^2) \otimes \sigma_{ab\to q\overline{q}} \otimes \overline{D_{a\to H}(z_a, Q^2)}
$$

Feynman-x:

$$
x_i = p^A/\overline{p^A}_{l,max}
$$

O: momentum transfer

- Traditional assumption: fragmentation is independent of collision systems
- In reality: several effects may influence it (MPI, quark-coalescence)
	- **Under-explored**! Baryon vs. meson? Strange vs. non-strange?

Charm-quark hadronization: HERA to LHC

Charm-quark fragmentation fractions into different hadrons *f*(c→h_c) from HERA ep, LEP e⁺e⁻ and the LHC pp collisions

- Reduction of D mesons by about 1/3
- Enhancement of charmed baryons
- No significant discrepancy between different LHC energies

Fragmentation is not universal

JHEP 12 (2023) 086

Comparison of heavy-flavor mesons

New Run-3 measurements in pp collisions at √*s* **= 13.6 TeV**

- **Strange vs. non-strange charm:** D_s⁺/D⁺ ratio
	- No substantial p_T -dependence present
	- **Catania** (coalescence and thermalized fragmentation) describes data
	- **POWLANG** (QGP) overestimates data
	- **PYTHIA 8** underestimates measurement CR-BLC vs. Monash difference is minor

Comparison of heavy-flavor mesons

New Run-3 measurements in pp collisions at √*s* **= 13.6 TeV**

- **Strange vs. non-strange charm:** D_s⁺/D⁺ ratio
	- No substantial p_T -dependence present
	- **Catania** (coalescence and thermalized fragmentation) describes data
	- **POWLANG** (QGP) overestimates data
	- **PYTHIA 8** underestimates measurement CR-BLC vs. Monash difference is minor
- **Charm vs. beauty**: prompt to non-prompt D ratio
	- Trend in p_T captured by models
	- PYTHIA 8 tunes (MPI with CR) overestimate the ratio
	- EPOS (parton dynamics) underestimates it

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity and the contract of the contract of the 22

Charmed-baryon enhancement

• **charm baryon vs. meson**

- Significant enhancement in **prompt Λ**⁻ to D^o ratio at low to intermediate p_T vs. e^+e^- and e^-p collisions
	- PYTHIA 8 Monash tune (based on e⁺e and e⁻p fragmentation) fails to describe the trends
- Several proposed models reproduce the behavior
	- Color-reconnection with color string junctions (CR-BLC modes 0, 2, 3)
	- Statistical hadronization model with extra charm-baryon resonances (SHM+RQM)
	- Quark coalescence models (Catania and QCM)
	- POWLANG (assuming QGP-like medium)

Beauty hadrons

- Similar enhancement present for **non-prompt Λ^c ⁺** at low and intermediate p_T
- (most non-prompt Λ_c^+ comes from Λ_b^0)
- **Both beauty and charm** baryons show an enhancement compared to mesons

Beauty hadrons

- Similar enhancement present for **non-prompt Λ^c ⁺** at low and intermediate p_T
- (most non-prompt Λ_c^+ comes from Λ_b^0)
- **Both beauty and charm** baryons show an enhancement compared to mesons

• **Non-prompt D^s + /(D0+D⁺)** ratio, on the contrary, is well described by pQCD calculations with PYTHIA 8 decayer

FONLL: JHEP 9805 (1998) 007 PYTHIA: Comput.Phys.Commun. 191 (2015) 159

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity and the contract of the contract of the 25

Charmed hadron yields vs. multiplicity

Charmed strange-to-nonstrange mesons

- Independent of p_T and multiplicity
- Described well by PYTHIA tunes
- CE-SH (canonical ensemble + statistical hadronization) model overestimates data at high multiplicities

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003 CE-SH: PLB 815 (2021) 136144

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity **Communist Communist Com**

Charmed hadron yields vs. multiplicity

Charmed strange-to-nonstrange mesons

- Independent of p_T and multiplicity
- Described well by PYTHIA tunes
- CE-SH (canonical ensemble + statistical hadronization) model overestimates data at high multiplicities

Charmed baryon-to-meson ratio

- Significant dependence on multiplicity at low p_T (5.3σ difference)
- PYTHIA 8 with CR-BLC qualitatively describes the multiplicity dependence
- CE-SH model also describes the trends

PLB 829 (2022) 137065

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003 CE-SH: PLB 815 (2021) 136144

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity and the contract of the 27

Charmed hadron yields vs. multiplicity

Charmed strange-to-nonstrange mesons

- Independent of p_T and multiplicity
- Described well by PYTHIA tunes
- CE-SH (canonical ensemble + statistical hadronization) model overestimates data at high multiplicities

Charmed-strange baryon-to-meson ratio

- Hint of p_T -dependence
- no multiplicity dependence within uncertainties
- Significantly underestimated by PYTHIA CR-BLC at all multiplicities

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003 CE-SH: PLB 815 (2021) 136144

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity and the contract of the contract of the 28

Toward larger systems

- **Large system: observed phenomena come from multiple sources**
	- 1) High-multiplicity vacuum-QCD effects
		- MPI with CR
	- 2) Hot nuclear effects
		- Collisional and radiative energy loss of heavy quark
		- Participation in hydrodynamical evolution
		- **Thermalization**
		- **Coalescence**
	- 3) Cold nuclear effects
		- Shadowing, etc.
- **Comparative measurements of baryons, strange and non-strange mesons in different collisions help clarify the picture**

Charm baryon-meson ratios in HI collisions

Multiplicity-dependence of the Λ^c + /D⁰ ratio

- Similar enhancement pattern to that in light baryon-to-meson ratios
- High-multiplicity pp, low- and high-mult p–Pb, and semicentral Pb–Pb are similar
- Strong separation for low-multiplicity pp: Threshold effect?
- **Radial-flow-like pattern in central Pb-Pb**

Charm baryon-meson ratios in HI collisions

Multiplicity-dependence of the Λ^c + /D⁰ ratio

- Similar enhancement pattern to that in light baryon-to-meson ratios
- High-multiplicity pp, low- and high-mult p–Pb, and semicentral Pb–Pb are similar
- Strong separation for low-multiplicity pp: Threshold effect?
- **Radial-flow-like pattern in central Pb-Pb**

Λc + /D⁰ ratio in Pb-Pb collisions vs. models

- Data qualitatively described by TAMU and Catania, SHMc slightly underestimates it
- **Interplay of radial flow and recombination**
- Different p_T redistribution for mesons and **baryons** SHMc: JHEP 07 (2021) 03

Charm hadron ratios vs. multiplicity

*p***T-integrated Λ^c + /D⁰ ratios**:

- Dependence on multiplicity, from low- p_T pp up to central Pb-Pb collisions
- Despite strong *N*_{ch}-dependent trends at mid-*p*_τ, no evidence of p_T -integrated N_{ch} -dependence
- Significantly higher values than in e⁺e and ep
- Collision-energy dependence is weak: STAR 200 GeV and ALICE 5.02 TeV consistent
- Model performance:
	- Increase predicted by PYTHIA 8 CR-BLC is not supported
	- SHMc (Pb–Pb): flat trend, but underestimates data
	- TAMU, Catania: similar for pp and Pb–Pb

SHMc: JHEP 07 (2021) 03 Catania: EPJC 78 no. 4, (2018) 348 TAMU: PRL 110 (2013) 15 Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003

Summary and outlook

Event-activity-dependent heavy-flavor measurements:

- Opportunity to understand the complexity of pp collisions → **Fragmentation is not universal**
- Examine the interplay of hot and cold nuclear, and vacuum effects → **Large systems can still be described within the standard thermal equilibrium + hydrodynamical evolution picture**

Summary and outlook

Event-activity-dependent heavy-flavor measurements:

- Opportunity to understand the complexity of pp collisions → **Fragmentation is not universal**
- Examine the interplay of hot and cold nuclear, and vacuum effects → **Large systems can still be described within the standard thermal equilibrium + hydrodynamical evolution picture**

LHC Run-3 in progress:

- New ITS, GEM-based inner TPC
- Approximately 100x luminosity in pp
- Continuous readout system
- Precision and differential measurements
- Novel observables to disentangle possible sources of the observed effects

Stay tuned for new, precise Run 3 results!

V4-HEP Prague 2024 R. Vértesi – ALICE Heavy-flavor vs. multiplicity and the state of the state 34

Thank you!

RENA

 $\mathcal{L}(\mathcal{A})$ and the properties of $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$

Strangeness in Pb-Pb collisions

- A 2.3σ **enhancement** in the strange non-strange D double ratio at 4<p_T<8 GeV/c
- Described by models including **strangeness enhancement** with fragmentation and recombination

ALICE 3 – the detector concept

- **Compact silicon tracker** with a very low material budget
- Superconducting magnet system (Max field: $B = 2 T$)
- **Particle identification** in a wide range of momenta and |*η*|<4
- **Precise vertexing** capabilities and **great momentum resolution**
- Continuous readout, online data processing

