Event-activity dependence of heavy-flavor production at the ALICE experiment

Róbert Vértesi vertesi.robert@wigner.hu HUN REN **WIGNER MTA** Centre of Excellence

This work has been supported by the Hungarian NKFIH OTKA FK131979 as well as the NKFIH 2021-4.1.2-TÉT-2022-00034 grants

Small collision systems

- **High-multiplicity pp collisions:** similar signatures to those observed in heavy-ion collisions where the formation of a quark-gluon plasma (QGP) is expected:
- Strangeness enhancement
- Long-range multiparticle correlations, "flow"

Small collision systems

- **High-multiplicity pp collisions:** similar signatures to those observed in heavy-ion collisions where the formation of a quark-gluon plasma (QGP) is expected:
- Strangeness enhancement
- Long-range multiparticle correlations, "flow"
- Is there a quark-gluon plasma in pp collisions?
- Or are vacuum-QCD effects responsible for this behavior

V4-HEP Prague 2024

Heavy-flavor w.r.t. event activity

 QGP-like effects may be generated by complex vacuum-QCD processes such as multiple-parton interactions (MPI) with color reconnection (CR)

Heavy-flavor w.r.t. event activity

• QGP-like effects may be generated by complex vacuum-QCD processes such as multiple-parton interactions (MPI) with color reconnection (CR)

- Heavy-flavor quarks work as hard probes down to low *p*_⊤ => pQCD benchmark
- Measuring the dependence of heavy-flavor production charged-hadron multiplicity and event activity allows for the investigation of:
 - Collective-like effects from small to large systems
 - Interplay between the hard and soft particle production
 - Role of multiparton interactions in heavy-quark production
 - Charm fragmentation across different collision systems

The ALICE experiment (Run-2)

The ALICE experiment (Run-2)

Reconstruction of heavy flavor decays

Semileptonic decays

- $c,b \rightarrow \mu$ $c,b \rightarrow e$ 3200000 Hadronic decays 800 (in measurements shown) • $D^0 \rightarrow K^- \pi^+$ K π^+ • $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ • $D^+ \rightarrow K^- \pi^+ \pi^+$ • $D_s^+ \rightarrow \Phi(\rightarrow K^+ K^-)\pi^+$ • $\Lambda_c^+ \rightarrow p K^- \pi^+$ • $\Lambda_c^+ \rightarrow pK^0_{S}(\rightarrow \pi^+\pi^-)$
 - $\Xi_c^0 \to \Xi^- \pi^+$
 - $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

Reconstruction of heavy flavor decays

V4-HEP Prague 2024

Reconstruction of heavy flavor decays

V4-HEP Prague 2024

Heavy-flavor production vs. multiplicity

Steeper-than-linear dependence of self-normalized yields on multiplicity at \sqrt{s} = 13 TeV

- Strong constraints for models
- Sensitive to autocorrelation: good simultaneous description of jets and UE needed

V4-HEP Prague 2024

Heavy-flavor production vs. multiplicity

Steeper-than-linear dependence of self-normalized yields on multiplicity at \sqrt{s} = 13 TeV

- Strong constraints for models
- Sensitive to autocorrelation: good simultaneous description of jets and UE needed

Performance of models:

- **PYTHIA 8 with MPI** (pQCD-based with PS and Lund fragmentation) adequately describes data
- **EPOS** parton model with hydrodynamic evolution captures trends

PYTHIA: Comput.Phys.Commun. 191 (2015) 159 EPOS: Nucl.Phys.B Proc.Suppl. 175 (2008) 81 CGC 3 pomeron: PRD 101 (2020) 094020

Transverse spherocity S₀

• Event-shape observable to express jettyness vs. isotropy

$$S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\vec{p}_{\mathrm{Ti}} \times \hat{n}|}{\sum_i p_{\mathrm{Ti}}} \right)^2$$

- Sensitive to initial hard scatterings and underlying event
- Jetty events $(S_0 \rightarrow 0)$ dominated by hard QCD processes
- Isotropic events $(S_0 \rightarrow 1)$ dominated by soft QCD processes

D-meson self-normalized yields vs. S₀

- Hint of an enhanced D-meson production toward higher multiplicity in jetty events
- Effect of hard scatterings leading to average increase in charged-particle multiplicity

V4-HEP Prague 2024

Transverse event activity R_{T}

 Event-activity observable representing the underlying event (UE)

$$R_{\mathrm{T}} = rac{N_{\mathrm{T}}^{\mathrm{ch}}}{\langle N_{\mathrm{T}}^{\mathrm{ch}}
angle}$$

 $N_{\rm T}^{\rm ch}$: event multiplicity in the transverse region

- High- p_{T} leading particle required
- **Toward** and **Away** regions typically contain the leading and subleading jet
- **Transverse** region is mostly independent of the hard scattering process for leading particle $p_T > 5$ GeV/c, and mostly contains the UE
 - $R_T < 1$: low underlying-event activity
 - $R_T > 1$: high underlying-event activity
- In models with multiple-parton interactions (MPI), R_{T} is strongly correlated with the number of MPIs

D-meson production vs. R_{T}

- Statistics allowed measurement only in Toward region:
 - High p_T : D⁰-meson production is independent of transverse activity these hadrons are produced in connection to the leading process
 - Low p_T : a hint of transverse-activity dependence
 - PYTHIA 8 with Monash and CR-BLC mode 2 tunes describes the data within uncertainties

D-meson production vs. R_{T}

- Statistics allowed measurement only in Toward region:
 - High p_T: D⁰-meson production is independent of transverse activity – these hadrons are produced in connection to the leading process
 - Low p_T : a hint of transverse-activity dependence
 - PYTHIA 8 with Monash and CR-BLC mode 2 tunes describes the data within uncertainties
- Transverse region:
 - PYTHIA 8 with Monash and CR-BLC Mode 2 tunes suggests dependence on transverse activity at any p_{T}
 - Heavy-flavor production is strongly influenced by UE
- The expected Run 3 luminosity will make it feasible to measure D-meson production in the transverse region

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003

V4-HEP Prague 2024

Heavy flavor fragmentation

- Production of heavy-flavor hadrons:
 - Parton distribution functions (PDF)
 - Hard scattering process
 - Fragmentation
- Factorization hypothesis: these 3 are independent!

$$\sigma_{hh \to H} = f_a(x_1, Q^2) \otimes f_b(x_2, Q^2) \otimes \sigma_{ab \to q\bar{q}} \otimes D_{q \to H}(z_q, Q^2)$$

$$Feynman-x:$$

$$x_i = p^A_{\parallel} / p^A_{\parallel,max}$$

$$Q: momentum transfer$$

Heavy flavor fragmentation

- Production of heavy-flavor hadrons:
 - Parton distribution functions (PDF)
 - Hard scattering process
 - Fragmentation
- Factorization hypothesis: these 3 are independent!

$$\sigma_{hh \to H} = f_a(x_1, Q^2) \otimes f_b(x_2, Q^2) \otimes \sigma_{ab \to q\bar{q}} \otimes D_{q \to H}(z_q, Q^2)$$

$$Feynman-x:$$

$$x_i = p^A_{\parallel} / p^A_{\parallel,max}$$

$$O: momentum transfer$$

- Traditional assumption: fragmentation is independent of collision systems
- In reality: several effects may influence it (MPI, quark-coalescence)
 - **Under-explored**! Baryon vs. meson? Strange vs. non-strange?

Charm-quark hadronization: HERA to LHC

Charm-quark fragmentation fractions into different hadrons $f(c \rightarrow h_c)$ from HERA ep, LEP e⁺e⁻ and the LHC pp collisions

- Reduction of D mesons by about 1/3
- Enhancement of charmed baryons
- No significant discrepancy between different LHC energies

Fragmentation is not universal

JHEP 12 (2023) 086

Comparison of heavy-flavor mesons

New Run-3 measurements in pp collisions at \sqrt{s} = 13.6 TeV

- Strange vs. non-strange charm: D_s⁺/D⁺ ratio
 - No substantial p_{T} -dependence present
 - Catania (coalescence and thermalized fragmentation) describes data
 - **POWLANG** (QGP) overestimates data
 - PYTHIA 8 underestimates measurement CR-BLC vs. Monash difference is minor

Comparison of heavy-flavor mesons

New Run-3 measurements in pp collisions at \sqrt{s} = 13.6 TeV

- Strange vs. non-strange charm: D_s⁺/D⁺ ratio
 - No substantial p_{T} -dependence present
 - Catania (coalescence and thermalized fragmentation) describes data
 - POWLANG (QGP) overestimates data
 - PYTHIA 8 underestimates measurement CR-BLC vs. Monash difference is minor
- Charm vs. beauty: prompt to non-prompt D ratio
 - Trend in p_{T} captured by models
 - PYTHIA 8 tunes (MPI with CR) overestimate the ratio
 - EPOS (parton dynamics) underestimates it

V4-HEP Prague 2024

Charmed-baryon enhancement

charm baryon vs. meson

- Significant enhancement in prompt Λ_c⁺ to D⁰ ratio at low to intermediate p_T vs. e⁺e⁻ and e⁻p collisions
 - PYTHIA 8 Monash tune (based on e⁺e⁻ and e⁻p fragmentation) fails to describe the trends
- Several proposed models reproduce the behavior
 - Color-reconnection with color string junctions (CR-BLC modes 0, 2, 3)
 - Statistical hadronization model with extra charm-baryon resonances (SHM+RQM)
 - Quark coalescence models
 (Catania and QCM)
 - POWLANG (assuming QGP-like medium)

Beauty hadrons

- Similar enhancement present for non-prompt Λ_c⁺ at low and intermediate p_T
- (most non-prompt Λ_c^+ comes from Λ_b^0)
- Both beauty and charm baryons show an enhancement compared to mesons

Beauty hadrons

- Similar enhancement present for non-prompt Λ_c⁺ at low and intermediate p_T
- (most non-prompt Λ_{c^+} comes from Λ_{b^0})
- Both beauty and charm baryons show an enhancement compared to mesons

 Non-prompt D_s⁺/(D⁰+D⁺) ratio, on the contrary, is well described by pQCD calculations with PYTHIA 8 decayer

FONLL: JHEP 9805 (1998) 007 PYTHIA: Comput.Phys.Commun. 191 (2015) 159

V4-HEP Prague 2024

Charmed hadron yields vs. multiplicity

Charmed strange-to-nonstrange mesons

- Independent of p_{T} and multiplicity
- Described well by PYTHIA tunes
- CE-SH (canonical ensemble + statistical hadronization) model overestimates data at high multiplicities

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003 CE-SH: PLB 815 (2021) 136144

PLB 829 (2022) 137065

Charmed hadron yields vs. multiplicity

Charmed strange-to-nonstrange mesons

- Independent of p_{T} and multiplicity
- Described well by PYTHIA tunes
- CE-SH (canonical ensemble + statistical hadronization) model overestimates data at high multiplicities

Charmed baryon-to-meson ratio

- Significant dependence on multiplicity at low p_T (5.3σ difference)
- PYTHIA 8 with CR-BLC qualitatively describes the multiplicity dependence
- CE-SH model also describes the trends

PLB 829 (2022) 137065

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003 CE-SH: PLB 815 (2021) 136144

Charmed hadron yields vs. multiplicity

Charmed strange-to-nonstrange mesons

- Independent of p_{T} and multiplicity
- Described well by PYTHIA tunes
- CE-SH (canonical ensemble + statistical hadronization) model overestimates data at high multiplicities

Charmed-strange baryon-to-meson ratio

- Hint of p_{T} -dependence
- no multiplicity dependence within uncertainties
- Significantly underestimated by PYTHIA CR-BLC at all multiplicities

Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003 CE-SH: PLB 815 (2021) 136144

V4-HEP Prague 2024

Toward larger systems

- Large system: observed phenomena come from multiple sources
 - 1) High-multiplicity vacuum-QCD effects
 - MPI with CR
 - 2) Hot nuclear effects
 - Collisional and radiative energy loss of heavy quark
 - Participation in hydrodynamical evolution
 - Thermalization
 - Coalescence
 - 3) Cold nuclear effects
 - Shadowing, etc.
- Comparative measurements of baryons, strange and non-strange mesons in different collisions help clarify the picture

Charm baryon-meson ratios in HI collisions

Multiplicity-dependence of the Λ_c^+/D^0 ratio

- Similar enhancement pattern to that in light baryon-to-meson ratios
- High-multiplicity pp, low- and high-mult p–Pb, and semicentral Pb–Pb are similar
- Strong separation for low-multiplicity pp: Threshold effect?
- Radial-flow-like pattern in central Pb-Pb

Charm baryon-meson ratios in HI collisions

Multiplicity-dependence of the Λ_c^+/D^0 ratio

- Similar enhancement pattern to that in light baryon-to-meson ratios
- High-multiplicity pp, low- and high-mult p–Pb, and semicentral Pb–Pb are similar
- Strong separation for low-multiplicity pp: Threshold effect?
- Radial-flow-like pattern in central Pb-Pb

$\Lambda_{\rm c}{}^{\scriptscriptstyle +}\!/D^{\scriptscriptstyle 0}$ ratio in Pb-Pb collisions vs. models

- Data qualitatively described by TAMU and Catania, SHMc slightly underestimates it
- Interplay of radial flow and recombination
- Different *p*_T redistribution for mesons and baryons
 SHMc: JHEP 07 (2021) 03

V4-HEP Prague 2024

Charm hadron ratios vs. multiplicity

p_{T} -integrated Λ_{c}^{+}/D^{0} ratios:

- Dependence on multiplicity, from low-*p*_T pp up to central Pb-Pb collisions
- Despite strong N_{ch}-dependent trends at mid-p_T,
 no evidence of p_T-integrated N_{ch}-dependence
- Significantly higher values than in e⁺e⁻ and ep
- Collision-energy dependence is weak: STAR 200 GeV and ALICE 5.02 TeV consistent
- Model performance:
 - Increase predicted by PYTHIA 8 CR-BLC is not supported
 - SHMc (Pb–Pb): flat trend, but underestimates data
 - TAMU, Catania: similar for pp and Pb–Pb

SHMc: JHEP 07 (2021) 03 Catania: EPJC 78 no. 4, (2018) 348 TAMU: PRL 110 (2013) 15 Monash:EPJC74 (2014) 8, 3024 CR-BLC: JHEP 08 (2015) 003

Summary and outlook

Event-activity-dependent heavy-flavor measurements:

- Opportunity to understand the complexity of pp collisions
 → Fragmentation is not universal
- Examine the interplay of hot and cold nuclear, and vacuum effects
 → Large systems can still be described within the standard
 thermal equilibrium + hydrodynamical evolution picture

Summary and outlook

Event-activity-dependent heavy-flavor measurements:

- Opportunity to understand the complexity of pp collisions
 → Fragmentation is not universal
- Examine the interplay of hot and cold nuclear, and vacuum effects
 → Large systems can still be described within the standard
 thermal equilibrium + hydrodynamical evolution picture

V4-HEP Prague 2024

LHC Run-3 in progress:

- New ITS, GEM-based inner TPC
- Approximately 100x luminosity in pp
- Continuous readout system
- Precision and differential measurements
- Novel observables to disentangle possible sources of the observed effects

Stay tuned for new, precise Run 3 results!

Thank you!

R. Bark

Strangeness in Pb-Pb collisions

- A 2.3 σ enhancement in the strange non-strange D double ratio at 4< p_T <8 GeV/c
- Described by models including strangeness enhancement with fragmentation and recombination

ALICE 3 – the detector concept

- Compact silicon tracker with a very low material budget
- Superconducting magnet system (Max field: B = 2 T)
- **Particle identification** in a wide range of momenta and $|\eta| < 4$
- Precise vertexing capabilities and great momentum resolution
- Continuous readout, online data processing

