MOdifed Characteristics of Hadronic Interactions

in ultra-high-energy cosmic-ray showers

Jan Ebr, Jiří Blažek, Jakub Vícha, Tanguy Pierog, Eva Santos, Petr Trávníček, Nikolas Denner, Ralf Ulrich

**** * * ***

Co-funded by the European Union

MINISTRY OF EDUCATION, YOUTH AND SPORTS ebr@fzu.cz

Hadronic interactions and UHECR (ultra-high-energy cosmic rays)

Primary interactions of CR observed at Auger mostly above c.m.s energy of LHC (for p-p collisions)

- even at LHC energy, models uncertain due to lack of forward measurements
- below LHC energy: uncertainties in nuclear and pion interactions etc.

Eur. Phys. J. C (2021) 81:966

UHECR detection through air showers

- Pierre Auger Observatory (Argentina)
- Telescope Array (Utah)
- longitudinal shower profile (air fluorescence)
- particles arriving at ground (small sample)

Hadronic interactions in cosmic ray showers

Heitler-Matthews model (Astropart. Phys. 22 (2005) 387)

 $X_{\rm max} \approx \lambda_{\rm r} \ln[E_0/\xi_{\rm c}^{\rm e}] + X_0 - \lambda_{\rm r} \{\ln[3N_{\rm ch}] + \ln[A]\}$

$$N_{\mu} \approx \left(\frac{E_0}{\xi_{\rm c}^{\pi}}\right)^{\beta} A^{(1-\beta)} \qquad \beta \approx 1 - \frac{\kappa}{3\ln[N_{\rm ch}]} > 0.9$$

 X_{\max} and N_{μ} sensitive to both interaction properties - multiplicity N_{ch} and elasticity κ and primary mass A

$$\frac{E_{\rm em}}{E_0} = 1 - \left(\frac{E_0}{\xi_{\rm c}^{\pi}A}\right)^{\beta-1} \qquad \qquad \xi_{\rm c}^{\pi} \approx 20 \,{\rm GeV}$$

~ 90 % for 10^{19} eV protons – showers dominated by EM particles!

The importance of muons

- 4-component shower model:
 - pure EM component
 - muons, EM from decay, EM from "jets" = hadronic component
- pure EM component universal, changes mainly with distance to X_{max}

- muons: small fraction of energy, large fraction of information on hadronic interactions!

Modified hadronic interactions

Phys. Rev. D, 83:054026, 2011

- individual changes of multiplicity, elasticity and cross-section in CONEX - 1D simulations

- 215 citations

$$f(E, f_{19}) = 1 + (f_{19} - 1) \cdot \frac{\log_{10}(E/E_{\text{thr}})}{\log_{10}(10 \text{ EeV}/E_{\text{thr}})}$$

CONEX in Corsika: 3D information

MOCHI: CORSIKA 7.741 with CONEX option, Sibyll 2.3d

- nuclear projectiles treated as a set of p-Air interactions
- POS(ICRC2023)245
- POS(ICRC2021)441
- EPJ WoC 283:05005

"Allowed" modifications and thresholds

Cross-section ($E_{thr} = 10^{16} \text{ eV}$)

- well constrained for p-p at LHC to a few %
- unc. in conversion to p-A limited by CMS p-Pb measurement

Multiplicity ($E_{thr} = 10^{15} \text{ eV}$) - no p-A data, limited rapidity coverage

Elasticity ($E_{thr} = 10^{14} \text{ eV}$)

- difficult at accelerators, limits from nuclear emulsion chambers
- recent LHCf neutron elasticity measurement?
- range of modifications limited by internal consistency

cross-section multiplicity

elasticity

1.8

1.6

- 5 zenith angles
- 1000 showers per "bin"
- 750 000 showers

10^{18.7} eV

18

19

LHC

Number of muons vs. X_{max} for all muons

Number of muons vs. X_{max} @ 500 meters

Number of muons vs. X_{max} @ 1000 meters

Number of muons vs. X_{max} @ 1500 meters

Auger: combined fits of full distributions of X_{max} and ground signals

Muons at 1000 m at fixed DX

- remove effects of shifting $X_{\rm max}$ on S_{μ} by fitting a dependence on DX

- only a combination of extreme modifications works

13/20

Auger cross-section measurement

- modifications of elasticity change $\Lambda \rightarrow \sigma$ conversion: Auger CS = constraint in σ -elasticity space - unmodified Sibyll 2.3d smack on data; uncertainty extrapolation with $f(E, f_{10})$

$X_{\rm max}$ fluctuations

Ground particles: relative muon number fluctuations at 1000 meters

- not correlated with absolute changes in muon number, sensitive to high elasticity changes

Adding muons and proton/iron separation

Ratio between number of muons for iron and proton tends down when muons are added - whatever the answer to the muon problem is, it may make primary separation more difficult

Universality

Muon signal far more affected than EM (also lateral shape of EM well preserved) (notes: no complete 4-component model, arbitrary normalization between muon/EM)

Sensitivity of muon number to modification as a function of E_{min} , r

- sum of absolute values of changes of muon density divided by statistical uncertainty (1000 showers)
- example: proton @ 38 degrees
- large deviations in the most significant point in (E_{min}, r) space overwhelmingly due to low elasticity bins deep underground measurements highly interesting for particle physics!

Conclusions

- changing cross-section, elasticity and multiplicity within reasonable limits can have major impact on air-shower properties

- the impact can be quite different for quantities depending on 3D geometry as opposed to 1D sums
- the changes of hadronic interactions indicated by the Pierre Auger Observatory are just reachable
 - but only with a *combination* of modifications!
 - and already in a tension with other measurements
- a wealth of other features can be studied see POS(ICRC2023)245 (full papers soon)
- even if some modifications are not realistic, we can learn interesting insights