Theory and Experiment in High Energy Physics V4-HEP workshop

Prague, 3.X.2024

Hard diffraction in ATLAS

Maciej Lewicki

Institute of Nuclear Physics Polish Academy of Sciences

Outline

Introduction

Phenomenology overview

Experimental methods

Diffractive charm

Diffractive jets

Introduction

Forward proton scattering in a diverse physics program!

Elastic scattering

ATLAS EPJC 83 (2023) 441 ATLAS PLB 761 (2016) 158

Hard diffraction

Diffractive jets ATL-PHYS-PUB-2017-012

Leptons CMS 1803.04496 ATLAS 2009.14537

Single diffractive dissociation

ATLAS JHEP 02 (2020) 042

Heavy quarks

Goncalves et al 2007.04565 Howarth 2008.04249

W bosons

Tizchang, Etesami 2004.12203 Baldenegro et al 2009.08331

Exclusive jets

Trzebinski et al 1503.00699 Harland-Lang et al 1405.0018

Axion-like particles

Fichet et al 1312.5153 Baldenegro et al 1803.10835

Higgs boson

Cox et al 0709.3035 Heinemeyer et al 0708.3052

SUSY dark matter

Beresford & Liu 1811.06465 Harland-Lang et al 1812.04886

Hard diffraction in ATLAS

Hard diffraction in ATLAS

Phenomenology overview

- ► What is a Pomeron?
- Models of diffraction
- ► Hard diffraction
- ► Factorization and its breaking ...and its restoration

Pomeron in Regge theory

Chew & Frautschi (1961, 1962) plotted the spins of low lying mesons against square mass and noticed that they lie in a straight line:

$$a(t) = a(0) + a't$$

(asymptotic behavior):

$$\sigma_{\rm tot} \sim s^{\alpha(0)-1}$$

• Rising with \sqrt{s}

Pomeron in Regge theory

- In Regge theory scattering interpreted as exchanges of Regge trajectories (rather than individual particles)
- Chew & Frautschi (1961, 1962) plotted the spins of low lying mesons against square mass and noticed that they lie in a straight line:

$$a(t) = a(0) + a't$$

Total hadronic cross section (asymptotic behavior):

$$\sigma_{\rm tot} \sim s^{\alpha(0)-1}$$

► Rising with \sqrt{s} ⇒ there must exist a trajectory with a(0) > 1a Pomeron trajectory!

Models of diffraction

What is a **Pomeron** in **QCD**?

- "diffraction appears to be mediated by the exchange of low-x partons subject to color constraints" [hep-ph:0407035]
- vacuum quantum numbers $(J^{PC} = 0^{++})$
- simplest picture two gluons in a color singlet

3 main categories of effective models of diffraction:

- Resolved Pomeron
- ► Two-gluon (dipole) exchange
- ► Soft Color Interaction

Resolved Pomeron

- ► Ingelman-Schlein model
- ► Two different types of factorization:

1. Collinear factorization

The cross section given by a convolution of the partonic sub-process \rightarrow the same as in inelastic DIS – and diffractive parton distribution functions (DPDF) of the proton:

$$d\sigma = f_i^D(x, Q^2, x_{\mathbb{P}}, t) \otimes d\sigma_{sub}(x, Q^2)$$
proton DPDF partonic sub-proce

2. Proton-vertex factorization

Pomeron flux and its partonic structure:

$$f_i^D(x,Q^2,x_{\mathbb{P}},t) = f_{\mathbb{P}/p}(x_{\mathbb{P}},t) \cdot f_i(x/x_{\mathbb{P}},Q^2)$$

[Phys.Lett.B 152 (1985) 256-260] [Eur.Phys.J.C18:167-179,2000] [AIP Conf.Proc. 1105 (2009) 1, 248-251]

Color dipole framework

Two relevant scenarios (note that different proton remains intact): **1**.

- Fluctuation of the incoming virtual **gluon** into a heavy $q\bar{q}$ pair
- Subsequent elastic scattering of the $q\bar{q}$ dipole on the target proton
- <u>2.</u>
 - Fluctuation of the incoming virtual **photon** into a heavy $q\bar{q}$ pair
 - Subsequent interaction of the $q\bar{q}$ dipole with the parton inside the proton (proton breaks up)

[Phys.Lett.B 379 (1996) 239-248] [Phys.Lett.B 386 (1996) 389-396] [Phys.Lett.B 406 (1997) 171-177] [Phys.Rev.D 102 (2020) 7, 076020]

Soft Color Interaction

- Soft color exchange may change the topology of the created color string
- ► Hard process remains unaffected
- Natural emergence of rapidity gaps
- Similar concept used in the Generalized Area Law model (soft color exchange happens between the strings)
- SCI model has been compared to data with good agreement:
 - diffractive DIS [Edin, Ingelman, Rathsman, hep-ph/9508386, hep-ph/9602227, hep-ph/9605281, hep-ph/9912539]]]
 - hard diffraction in hadron-hadron coll. at the Tevatron [RE, Ingelman, Tîmneanu; hep-ph/0106246, hep-ph/0210408]

The SCI model reproduces diffractive rates in both DIS and hadron-hadron!

- Unified approach to both hard and soft diffractive events
- However, due to the complexity of soft interactions the model remains primarily qualitative

[Phys.Lett. B366 (1996) 371-378] [Phys.Rev. D64 (2001) 114015]

Hard diffraction

- ▶ Unlike "soft" diffraction (low *p*_{*T*}), "hard" diffraction involves **partonic interactions**
- ► Final states: high-energy jets, vector bosons, or heavy quarks.
- First observation: UA8 at SPS, $\sqrt{s} = 630 \text{ GeV}$
 - \rightarrow Jet distributions similar to inelastic parton-parton scattering
 - \rightarrow suggesting the parton scattering underneath
 - → but the scattered protons were detected in forward spectrometers!
- ▶ Ingelman and Schlein (1985) "hard Pomeron" that features a partonic structure
- It may be a different Pomeron: The probability to emit a pomeron governed by the same Regge-type formulae, → but the trajectory *a*(*t*) can be different.

Diffractive PDFs at HERA, kinematics of hard diffraction

- ► Hard diffraction measured at HERA *ep* collider
- Diffractive deeply inelastic scattering (DDIS)
- Scattering of the electron off a parton inside a pomeron emitted from the proton
- ▶ → Possible to measure the diffractive structure functions F_2^D
- Depends not only on x and Q^2 , but also on the proton kinematics: t and $x_{\mathbb{P}}$

- *t*: squared four-momentum exchanged by the proton (intact).
- ► *M_X*: invariant mass of the diffractively produced system.
- ► *x*: fraction of the proton carried by the struck quark.
- $x_{\mathbb{P}} = \xi$: momentum fraction lost by the proton.
- ▶ $\beta = \frac{x}{\xi}$: fraction of the Pomeron momentum carried by the struck parton. Hard diffraction in ATLAS

Factorization breaking

- CDF at Tevatron: factorization does not hold in hadron-hadron collisions
- Additional soft interactions (either in the initial or final states) may spoil the rapidity gap and break up the outgoing proton
- Overall suppression factor little dependence on the kinematics of the interaction or its type
- Suppressed approximately by a factor of 10 at the Tevatron with respect to HERA.

Gap survival

- Soft survival probability factor ⟨S⟩² = probability that the event with rapidity gaps survives the soft exchanges
- (Mostly) **independent on the details of the process** (i.e. does not depend on ξ, t, β, Q^2)
- ► Gap survival probability estimate is crucial for hard diffraction
- Non-perturbative nature: model-dependent, difficult to obtain for all processes.

Restoring the factorization

- If an additional soft exchange between the protons occurs, it spreads over the whole rapidity region
- ► For events with **two rapidity gaps** (DPE):
 - either both rapidity gaps survive, or
 - both are spoiled at the same time
- The structure function measured in DPE events where already one gap was present agreed with the HERA expectation → no factorization breaking!

Experimental methods

- + historically used for diffractive pattern recognition
- + no need for additional detectors
- gap is frequently destroyed (pile-up, rescattering)
- gap may be out of acceptance
- gap may be a statistical fluke

M. P. Lewicki

[ATLAS, Eur.Phys.J.C 72 (2012) 1926] [ATLAS, Phys.Lett.B 754 (2016) 214-234]

Measuring forward protons:

- + **Protons measured directly** (deflection $\rightarrow \vec{p}, E$)
- + Suitable for pile-up environment
- Protons are scattered at very small angles
- Additional detectors required
 - \rightarrow far downstream.

 ∞

Roman Pot in action

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (ξ, p_T)

Mass acceptance:

mass of central system when both protons are tagged in Roman pot

Hard diffraction in ATLAS

Backgrounds and its reduction

- ► Multiple *p*+*p* collisions happening in the ATLAS detector at the same time (pile-up).
- **Background**: in a pile-up environment there are usually multiple diffractive events happening.
- Which vertex corresponds to the measured forward proton?
- Main tools for background suppression:
 - data taking in special low-pile-up runs (price is statistics),
 - **ToF measurement** (only for double-tag events),
 - kinematic match of forward proton and central system (only for exclusive processes).

Hard diffraction in ATLAS

Reducing physics background with ToF

- Calculate vertex position: $z_{\text{ToF}} = \frac{c}{2}\Delta t$
- Compare z positions reconstructed by ATLAS and AFP ToF:

400

2017

67 ± 12

Diffractive charm

Why open charm?

- cc̄ production lowest-mass process involving hard-scale
- Probing the nature of Pomeron, testing alternative approaches (e.g. Soft Color Interaction)
- ► Testing the **factorization theorem**
- Diffractive events identified with forward proton tag with AFP

Unique class of events:

- i) accessible within perturbative QCD framework,
- ii) characterized by high exepected cross-section,
- iii) possible to be studied in a clean, low background experimental environment low pile-up

Phenomenology perspective

Specifics of charm production:

- At LHC, **large cross-sections** are expected from QCD.
 - \rightarrow background can be reduced with special, low pile-up runs
 - \rightarrow identification of diffractive events possible with intact protons
- Lesson from data on inclusive charm production: QCD LO collinear approach works rather poorly – higher order corrections are needed (e.g. k_t factorization).
- There exists a wide range of model predictions (next slides).

Discovery potential:

- ► Tests of factorization theorem(s).
- ► Probing the **nature of the Pomeron**.
- Measurement of diffractive charm production may pin down the mechanism of diffractive production large differences in predicted cross-sections.

Measurement Feasibility

Excellent data to be studied:

- ► LHC Run 2 (2017): 100 nb^{-1} at $\mu \sim 0.05$, 500 nb^{-1} at $\mu \sim 0.3$, 650 nb^{-1} at $\mu \sim 1$, 150 pb^{-1} at $\mu \sim 2$.
- LHC Run 3 (2022): 0.46 nb⁻¹ at μ ~ 0.005 34.6 nb⁻¹ at μ ~ 0.05 170 nb⁻¹ at μ ~ 0.02
- LHC Run 3 (2023): 175 nb⁻¹ at µ ~ 1 29 nb⁻¹ at µ ~ 0.2 61 nb⁻¹ at µ ~ 0.05

 Feasibility studied with simulations (JHEP 02 (2017) 089)

• Dedicated triggers: track with min. $p_T = 2, 4, 6, 8 \text{ GeV}/c$, single-side tag in AFP track with min. $p_T = 2, 4, 6, 8 \text{ GeV}/c$, double-sides tag in AFP

Diffractive jets

Single Diffractive Jet Production

Motivation:

- measure cross section and gap survival probability,
- ► search for the presence of an additional contribution from Reggeon exchange,
- check Pomeron universality between ep and pp colliders

Measurements from CMS already available (8 TeV): EPJC 80 (2020) 1164

Double Pomeron Exchange Jet Production

Motivation:

- measure cross section and gap survival probability,
- ▶ search for the presence of an additional contribution from Reggeon exchange,
- ► investigate gluon structure of the Pomeron.

Exclusive Jet Production

Thank you for your attention!

BACKUP SLIDES

Elastic and diffractive processes are intimately linked to our basic understanding of physics:

Fundamental questions:

- ► Color Confinement
- ► Hadronic mass generation
- Non-perturbative vs perturbative degrees of freedom
- ► Strong / weak coupling and super-gravity

Practical concerns:

- ► Modelling pile-up at the LHC
- Luminosity monitoring
- Modelling cosmic ray air showers

Single Diffraction

$$\sigma(h_1h_2 \to XQ\bar{Q}Y_h_2) = \int dx_1 \int dx_2 \ g_1(x_1,\mu^2) \ g_2^D(x_2,\mu^2) \ \hat{\sigma}(gg \to Q\bar{Q})$$

- ► The dominant contribution in SD processes at the LHC.
- Gay Ducati *et al.*, Phys.Rev.D 81 (2010) 054034 14 TeV, Resolved Pomeron, $\sigma_{\gamma p} = 178 \ \mu b \ (R_{c\bar{c}} = 2.3\%)$
- Kopeliovich et al., Phys.Rev.D 76 (2007) 034019: Dipole, Leading Twist Mechanisms
- ► Luszczak *et al.*, Phys. Rev. D 91, 054024 (2015): Resolved Pomeron, 14 TeV, |y| < 2.5, $p_T > 3.5$ GeV, $D^0 + \bar{D^0}$, $\sigma_{\mathbb{P}p} = 3555$ nb.
- Luszczak et al., JHEP 02 (2017) 089: k_t -factorization, 13 TeV, |y| < 2.1, $p_T > 3.5$ GeV, $D^0 + \overline{D^0}$, $\sigma_{Pn}^{SD} = 3-4 \ \mu b$
- ► Siddikov *et al.*, Phys.Rev.D 102 (2020) 7, 076020: Dipole Model, 13 TeV, $R_{c\bar{c}}=1.6\% \rightarrow \sigma_{\mathbb{P}p} \approx 135\mu b$ predictions regarding charged particle multiplicity dependence
- 2. Single diffraction, γ -p process

$$\sigma(h_1h_2 \to XQ\bar{Q}_h_2) = \int dx_1 \int dx_2 \ g_1(x_1,\mu^2) \ \gamma_2(x_2,\mu^2) \ \hat{\sigma}(\gamma g \to Q\bar{Q})$$

- Strong electromagnetic fields arising around the proton due to relativistic effects may interact directly with the partons inside the proton.
- Goncalves *et al*, Nucl.Phys.A 976 (2018) 33-45:
 13 TeV, |y| < 10, Dipole Model, σ_{γp} = 1030 (b-CGC) 1140 (IP-SAT) nb

Hard diffraction in ATLAS

Central Diffraction

3. Central diffraction with double $\mathbb P$ exchange

$$\sigma(h_1h_2 \to h_1 _ XQ\bar{Q}Y_h_2) = \int dx_1 \int dx_2 \ g_1^D(x_1,\mu^2) \ g_2^D(x_2,\mu^2) \ \hat{\sigma}(gg \to Q\bar{Q})$$

- Gay Ducati, *et al.*, Phys. Rev. C 83, 014903 (2011): 14 TeV, Resolved Pomeron $\sigma_{\mathbb{PP}} = 13.6 \ \mu b \ (R_{cc} = 0.17\%)$
- Luszczak *et al.*, Phys. Rev. D 91, 054024 (2015): 14 TeV, Resolved Pomeron, |y| < 2.5, $p_T > 3.5$ GeV, $D^0 + \overline{D^0}$, $\sigma_{\mathbb{PP}} = 177$ nb.

4. Central diffraction in γ , \mathbb{P} exchange

$$\sigma(h_1h_2 \to h_1 _Q\bar{Q}Y_h_2) = \int dx_1 \int dx_2 \ \gamma_1(x_1,\mu^2) \ g_2^D(x_2,\mu^2) \ \hat{\sigma}(\gamma g \to Q\bar{Q})$$

- Goncalves *et al*, Nucl.Phys.A 1000 (2020) 121862: *pp* @ 13 TeV, Exclusive, $|\eta| < 2.5$, Dipole Model $\sigma_{\gamma P} = 83.2-117.9$ nb
- ► Goncalves *et al*, Phys.Rev.D 85 (2012) 054019: pp @ 14 TeV, Dipole Model, $\sigma_{\gamma P} = 161$ nb pp @ 14 TeV, Resolved Pomeron, $\sigma_{\gamma P} = 1208$ nb

Central Diffraction (contd.)

5. Central exclusive production in the electromagnetic channel

$$\sigma(h_1h_2 \to h_1 _Q\bar{Q}_h_2) = \int dx_1 \int dx_2 \ \gamma_1(x_1,\mu^2) \ \gamma_2(x_2,\mu^2) \ \hat{\sigma}(\gamma\gamma \to Q\bar{Q})$$

• The term $\hat{\sigma}(\gamma\gamma \rightarrow Q\bar{Q})$ is heavily suppressed due to presence of two EM vertices, thus it is not expected to contribute significantly to the signal measured experimentally.

6. Central exclusive production in the strong channel

 $\sigma(h_1h_2 \to h_1 _Q\bar{Q}_h_2) \propto \hat{\sigma}(gg \to Q\bar{Q})$

- Maciuła *et al.*, Phys.Lett.B 685 (2010) 165-169:
 2 TeV: R_{cc̄} = 1%
- Gay Ducati, *et al.*, Phys. Rev. C 83, 014903 (2011): 14 TeV: σ_{PP} = 0.53 μb (R_{cc̄} = 0.007%)

Measurement

ATLAS

- Low-p_T charged particle tracking (down to 100 MeV)
- Calorimeter acceptance |η| < 4.9 (rapidity gaps)
- ► Dedicated triggers
- Advanced vertex & track reconstruction software

//// ////→

AFP

- Forward proton tagging with Roman Pot technology
- ► 3D pixel silicon tracker → precise reco. of kinematics
- Acceptance: $0.02 \leq \xi = 1 - E_{\text{proton}}/E_{\text{beam}} \leq 0.15$
- ► High efficiency, low background

Targeted decay modes:

- $\blacktriangleright D^{*\pm} \to D_0 \pi \to K \pi \pi$
- ► $D^{\pm} \rightarrow K\pi\pi$
- ► $D_s^{\pm} \to KK\pi$
- ► $\Lambda_C \rightarrow pK\pi$