Theory and Experiment in High Energy Physics V4-HEP workshop *Prague, 3.X.2024*

Hard diffraction in ATLAS

Maciej Lewicki

Institute of Nuclear Physics POLISH ACADEMY OF SCIENCES

Outline

[Introduction](#page-2-0)

[Phenomenology overview](#page-7-0)

[Experimental methods](#page-18-0)

Diff[ractive charm](#page-45-0)

Diff[ractive jets](#page-49-0)

[Introduction](#page-2-0)

Forward proton scattering in a diverse physics program!

ATLAS [EPJC 83 \(2023\) 441](https://arxiv.org/pdf/2207.12246) ATLAS [PLB 761 \(2016\) 158](https://arxiv.org/abs/1607.06605)

ATLAS [JHEP 02 \(2020\) 042](https://link.springer.com/article/10.1007/JHEP02(2020)042)

Diffractive jets Heavy quarks Exclusive jets Higgs boson [ATL-PHYS-PUB-2017-012](https://cds.cern.ch/record/2273274) Goncalves et al [2007.04565](https://arxiv.org/abs/2007.04565)

CMS [1803.04496](https://arxiv.org/abs/1803.04496) ATLAS [2009.14537](https://arxiv.org/abs/2009.14537)

Howarth [2008.04249](https://arxiv.org/abs/2008.04249)

Tizchang, Etesami [2004.12203](https://arxiv.org/abs/2004.12203) Baldenegro et al [2009.08331](https://arxiv.org/abs/2009.08331)

Trzebinski et al [1503.00699](https://arxiv.org/abs/1503.00699) Harland-Lang et al [1405.0018](https://arxiv.org/abs/1405.0018)

Leptons W bosons Axion-like particles SUSY dark matter

Fichet et al [1312.5153](https://arxiv.org/abs/1312.5153) Baldenegro et al [1803.10835](https://arxiv.org/abs/1803.10835)

Cox et al [0709.3035](https://arxiv.org/abs/0709.3035) Heinemeyer et al [0708.3052](https://arxiv.org/abs/0708.3052)

Beresford & Liu [1811.06465](https://arxiv.org/abs/1811.06465) Harland-Lang et al [1812.04886](https://arxiv.org/abs/1812.04886)

M. P. Lewicki 6/31

Forward proton scattering in a diverse physics program!

ATLAS [EPJC 83 \(2023\) 441](https://arxiv.org/pdf/2207.12246) ATLAS [PLB 761 \(2016\) 158](https://arxiv.org/abs/1607.06605)

Elastic scattering Single diffractive dissociation ATLAS [JHEP 02 \(2020\) 042](https://link.springer.com/article/10.1007/JHEP02(2020)042)

Trzebinski et al [1503.00699](https://arxiv.org/abs/1503.00699) Harland-Lang et al [1405.0018](https://arxiv.org/abs/1405.0018)

Leptons W bosons Axion-like particles SUSY dark matter

Fichet et al [1312.5153](https://arxiv.org/abs/1312.5153) Baldenegro et al [1803.10835](https://arxiv.org/abs/1803.10835)

Cox et al [0709.3035](https://arxiv.org/abs/0709.3035) Heinemeyer et al [0708.3052](https://arxiv.org/abs/0708.3052)

Beresford & Liu [1811.06465](https://arxiv.org/abs/1811.06465) Harland-Lang et al [1812.04886](https://arxiv.org/abs/1812.04886)

γ γ

> CMS [1803.04496](https://arxiv.org/abs/1803.04496) ATLAS [2009.14537](https://arxiv.org/abs/2009.14537)

γ γ

Tizchang, Etesami [2004.12203](https://arxiv.org/abs/2004.12203) Baldenegro et al [2009.08331](https://arxiv.org/abs/2009.08331)

W–

W⁺

γ + *γ* processes

Soft

diffraction

[Phenomenology overview](#page-7-0)

- ▶ What is a Pomeron?
- ▶ Models of diffraction
- ▶ Hard diffraction
- ▶ Factorization and its breaking ...and its restoration

Pomeron in Regge theory

▶ Chew & Frautschi (1961, 1962) plotted the spins of low lying mesons against square mass and noticed that they lie in a straight line:

$$
a(t) = a(0) + a't
$$

▶ Rising with [√] *s*

Pomeron in Regge theory

- ▶ In Regge theory scattering interpreted as exchanges of Regge trajectories (rather than individual particles)
- \triangleright Chew & Frautschi (1961, 1962) plotted the spins of low lying mesons against square mass and noticed that they lie in a straight line:

$$
a(t) = a(0) + a't
$$

▶ Total hadronic cross section (asymptotic behavior): *σ*tot ∼ *s*

$$
\sigma_{\rm tot} \sim s^{\alpha(0)-1}
$$

▶ Rising with [√] *s* =⇒ there must exist a trajectory with *a*(0) *>* 1 a Pomeron trajectory!

Models of diffraction

What is a Pomeron in QCD?

- ▶ *"diffraction appears to be mediated by the exchange of low-x partons subject to color constraints"* [\[hep-ph:0407035\]](https://arxiv.org/abs/hep-ph/0407035v1)
- ▶ vacuum quantum numbers $(J^{PC} = 0^{++})$
- \triangleright simplest picture two gluons in a color singlet

3 main categories of effective models of diffraction:

- ▶ Resolved Pomeron
- ▶ Two-gluon (dipole) exchange
- ▶ Soft Color Interaction

Resolved Pomeron

- ▶ Ingelman-Schlein model
- ▶ Two different types of factorization:

1. Collinear factorization

The cross section given by a convolution of the partonic sub-process \rightarrow the same as in inelastic DIS – and diffractive parton distribution functions (DPDF) of the proton:

$$
d\sigma = f_i^D(x, Q^2, x_{\mathbb{P}}, t) \otimes d\sigma_{\text{sub}}(x, Q^2)
$$

proton DPDF
partonic sub-process

2. Proton-vertex factorization

Pomeron flux and its partonic structure:

$$
f_i^D(x, Q^2, x_{\mathbb{P}}, t) = f_{\mathbb{P}/p}(x_{\mathbb{P}}, t) \cdot f_i(x/x_{\mathbb{P}}, Q^2)
$$

[\[Phys.Lett.B 152 \(1985\) 256-260\]](https://inspirehep.net/literature/207624) [\[Eur.Phys.J.C18:167-179,2000\]](https://arxiv.org/abs/hep-ph/0007359) [\[AIP Conf.Proc. 1105 \(2009\) 1, 248-251\]](https://inspirehep.net/literature/802724)

Color dipole framework

Two relevant scenarios (note that different proton remains intact): 1.

- \blacktriangleright Fluctuation of the incoming virtual gluon into a heavy $q\bar{q}$ pair
- \triangleright Subsequent elastic scattering of the $q\bar{q}$ dipole on the target proton
- 2.
	- \blacktriangleright Fluctuation of the incoming virtual **photon** into a heavy $q\bar{q}$ pair
	- ▶ Subsequent interaction of the $q\bar{q}$ dipole with the parton inside the proton (proton breaks up)

[\[Phys.Lett.B 379 \(1996\) 239-248\]](https://inspirehep.net/literature/416158) [\[Phys.Lett.B 386 \(1996\) 389-396\]](https://inspirehep.net/literature/418790) [\[Phys.Lett.B 406 \(1997\) 171-177\]](https://inspirehep.net/literature/427672) [\[Phys.Rev.D 102 \(2020\) 7, 076020\]](https://arxiv.org/pdf/2008.12446.pdf)

Soft Color Interaction

- ▶ Soft color exchange may change the topology of the created color string
- ▶ Hard process remains unaffected
- ▶ Natural emergence of rapidity gaps
- ▶ Similar concept used in the Generalized Area Law model (soft color exchange happens between the strings)
- ▶ SCI model has been compared to data with good agreement:
	- ▶ diffractive DIS [Edin, Ingelman, Rathsman, hep-ph/9508386, hep-ph/9602227, hep-ph/9605281, hep-ph/9912539]]]
	- \blacktriangleright hard diffraction in hadron–hadron coll. at the Tevatron [RE, Ingelman, Tîmneanu; hep-ph/0106246, hep-ph/0210408]

The SCI model reproduces diffractive rates in both DIS and hadron-hadron!

- ▶ Unified approach to both hard and soft diffractive events
- ▶ However, due to the complexity of soft interactions the model remains primarily qualitative

[\[Phys.Lett. B366 \(1996\) 371-378\]](https://arxiv.org/abs/hep-ph/9508386) [\[Phys.Rev. D64 \(2001\) 114015\]](https://arxiv.org/abs/hep-ph/0106246)

Hard diffraction

- \blacktriangleright Unlike "soft" diffraction (low p_T), "hard" diffraction involves partonic interactions
- ▶ Final states: high-energy jets, vector bosons, or heavy quarks.
- ▶ First observation: UA8 at SPS, \sqrt{s} = 630 GeV
	- \rightarrow Jet distributions similar to inelastic parton-parton scattering
	- \rightarrow suggesting the parton scattering underneath
	- \rightarrow but the scattered protons were detected in forward spectrometers!
- \blacktriangleright Ingelman and Schlein (1985) "hard Pomeron" that features a partonic structure
- ▶ It may be a different Pomeron: The probability to emit a pomeron governed by the same Regge-type formulae, \rightarrow but the trajectory $\alpha(t)$ can be different.

Diffractive PDFs at HERA, kinematics of hard diffraction

- ▶ Hard diffraction measured at HERA *ep* collider
- ▶ Diffractive deeply inelastic scattering (DDIS)
- ▶ Scattering of the electron off a parton inside a pomeron emitted from the proton
- ▶ → Possible to measure the diffractive structure functions F_2^D
- \blacktriangleright Depends not only on *x* and Q^2 , but also on the proton kinematics: t and $x_{\mathbb{P}}$

- ▶ *t*: squared four-momentum exchanged by the proton (intact).
- \blacktriangleright *M_X*: invariant mass of the diffractively produced system.
- ▶ *x*: fraction of the proton carried by the struck quark.
- \triangleright *x*_P = *ξ*: momentum fraction lost by the proton.
- \blacktriangleright $\beta = \frac{x}{\xi}$: fraction of the Pomeron momentum carried by the struck parton. M. P. Lewicki ^G 2008 and the settlement of the Hard diff[raction in ATLAS](#page-0-0) 14 / 31 and the settlement of the settlement of the Hard diffraction in ATLAS 14 / 31

Factorization breaking

- ▶ CDF at Tevatron: factorization does not hold in hadron-hadron collisions
- \blacktriangleright Additional soft interactions (either in the initial or final states) may spoil the rapidity gap and break up the outgoing proton
- \triangleright Overall suppression factor little dependence on the kinematics of the interaction or its type
- \blacktriangleright Suppressed approximately by a factor of 10 at the Tevatron with respect to HERA.

Gap survival

- **► Soft survival probability factor** $\langle S \rangle^2$ = probability that the event with rapidity gaps survives the soft exchanges
- \blacktriangleright (Mostly) independent on the details of the process (i.e. does not depend on *ξ*, *t*, *β*, Q^2)
- \triangleright Gap survival probability estimate is crucial for hard diffraction
- ▶ Non-perturbative nature: model-dependent, difficult to obtain for all processes.

Restoring the factorization

- ▶ If an additional soft exchange between the protons occurs, it spreads over the whole rapidity region
- \blacktriangleright For events with two rapidity gaps (DPE): – either both rapidity gaps survive, or
	- both are spoiled at the same time
- ▶ The structure function measured in DPE events where already one gap was present agreed with the HERA expectation \rightarrow no factorization breaking!

[Experimental methods](#page-18-0)

- + historically used for diffractive pattern recognition
- + no need for additional detectors
- gap is frequently destroyed (pile-up, rescattering)
- gap may be out of acceptance
- gap may be a statistical fluke

M. P. Lewicki [\[ATLAS, Phys.Lett.B 754 \(2016\) 214-234\]](https://doi.org/10.1016/j.physletb.2016.01.028) Hard diff[raction in ATLAS](#page-0-0) 18 / 31 [\[ATLAS, Eur.Phys.J.C 72 \(2012\) 1926\]](https://doi.org/10.1140/epjc/s10052-012-1926-0)

Measuring forward protons:

- + Protons measured directly (deflection→*⃗p,E*)
- + Suitable for pile-up environment
- Protons are scattered at very small angles
- Additional detectors required \rightarrow far downstream.

proton

η

LHC beam x y z

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (ξ, p_T) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (*ξ, pT*) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

ratio of protons with a given (*ξ, pT*) that reached the detector to the total number of the scattered protons having given (*ξ, pT*)

Mass acceptance:

M. P. Lewicki 20 / 31

Backgrounds and its reduction

- \blacktriangleright Multiple $p+p$ collisions happening in the ATLAS detector at the same time (pile-up).
- ▶ Background: in a pile-up environment there are usually multiple diffractive events happening.
- ▶ Which vertex corresponds to the measured forward proton?
- ▶ Main tools for background suppression:
	- \blacktriangleright data taking in special low-pile-up runs (price is statistics),
	- ▶ ToF measurement (only for double-tag events),
	- ▶ kinematic match of forward proton and central system (only for exclusive processes).

Reducing physics background with ToF

- ▶ Calculate vertex position: $z_{\text{ToF}} = \frac{c}{2} \Delta t$
- ▶ Compare *z* positions reconstructed by ATLAS and AFP ToF:

 400

2017

Diff[ractive charm](#page-45-0)

Why open charm?

- \triangleright *c* \bar{c} production lowest-mass process involving hard-scale
- ▶ Probing the nature of Pomeron, testing alternative approaches (e.g. Soft Color Interaction)
- \blacktriangleright Testing the factorization theorem
- ▶ Diffractive events identified with forward proton tag with AFP

 h_1 \sim h_1 \sim X X *g g c c c*¯ *c*¯ lectered Y *γ* $\mathbb{P} \! \! \! \! \! \! \nearrow$ *h*2 *h*2 *h*2 *h*2 *h*1 *h*1 *h*1 *h*1 *h*1 *h*1 *h*1 *h*1 $X = \Box$ *γ γ* P⊘ *g c c c g* Y. *γ* P/P Y P *h*2 *h*2 *h*2 *h*2 h_2 $h₂$ *h*2 h_2

Unique class of events:

- i) accessible within perturbative QCD framework,
- ii) characterized by high exepected cross-section,
- iii) possible to be studied in a clean, low background experimental environment low pile-up

M. P. Lewicki 24 / 31

Phenomenology perspective

Specifics of charm production:

- ▶ At LHC, large cross-sections are expected from QCD.
	- \rightarrow background can be reduced with special, low pile-up runs
	- \rightarrow identification of diffractive events possible with intact protons
- ▶ Lesson from data on inclusive charm production: QCD LO collinear approach works rather poorly – higher order corrections are needed (e.g. *kt* factorization).
- \blacktriangleright There exists a wide range of model predictions (next slides).

Discovery potential:

- \blacktriangleright Tests of factorization theorem(s).
- ▶ Probing the nature of the Pomeron.
- \blacktriangleright Measurement of diffractive charm production may pin down the mechanism of diffractive production large differences in predicted cross-sections.

Measurement Feasibility

Excellent data to be studied:

- ▶ LHC Run 2 (2017): 100 nb−¹ at *^µ* [∼] 0.05, 500 nb−¹ at *^µ* [∼] 0.3, 650 nb−¹ at *^µ* [∼] 1, 150 pb−¹ at *^µ* [∼] 2.
- ▶ LHC Run 3 (2022): 0.46 nb−¹ at *^µ* [∼] 0.005 34.6 nb−¹ at *^µ* [∼] 0.05 170 nb−¹ at *^µ* [∼] 0.02
- ▶ LHC Run 3 (2023): 175 nb−¹ at *^µ* [∼] ¹ 29 nb⁻¹ at *µ* ∼ 0.2 61 nb−¹ at *^µ* [∼] 0.05

▶ Feasibility studied with simulations (JHEP 02 (2017) 089)

▶ Dedicated triggers:

track with min. $p_T = 2, 4, 6, 8$ GeV/*c*, single-side tag in AFP track with min. $p_T = 2, 4, 6, 8$ GeV/*c*, double-sides tag in AFP

Diff[ractive jets](#page-49-0)

Single Diffractive Jet Production

Motivation:

- ▶ measure cross section and gap survival probability,
- ▶ search for the presence of an additional contribution from Reggeon exchange,
- ▶ check Pomeron universality between ep and pp colliders

Measurements from CMS already available (8 TeV): [EPJC 80 \(2020\) 1164](https://link.springer.com/article/10.1140/epjc/s10052-020-08562-y)

Double Pomeron Exchange Jet Production

g

g

P⊁

 $\mathbb{P} \! /\!\! \mathbb{P}$

Motivation:

- ▶ measure cross section and gap survival probability,
- \blacktriangleright search for the presence of an additional contribution from Reggeon exchange,
- ▶ investigate gluon structure of the Pomeron.

Exclusive Jet Production

Thank you for your attention!

Backup Slides

Elastic and diffractive processes are intimately linked to our basic understanding of physics:

Fundamental questions:

- ▶ Color Confinement
- ▶ Hadronic mass generation
- ▶ Non-perturbative vs perturbative degrees of freedom
- ▶ Strong / weak coupling and super-gravity

Practical concerns:

- ▶ Modelling pile-up at the LHC
- ▶ Luminosity monitoring
- ▶ Modelling cosmic ray air showers

Single Diffraction

P

g

g

 h_1 \sim

*h*2

 h_1 \sim

c c¯

c

c¯

X

*h*2 Y

X

*h*2

1. Singe diffraction, P-*p* process

$$
\sigma(h_1\,h_2 \to XQ\bar{Q}Y_\,h_2) = \int dx_1 \int dx_2 \ g_1(x_1,\mu^2) \ g_2^D(x_2,\mu^2) \ \hat{\sigma}(gg \to Q\bar{Q})
$$

- ▶ The dominant contribution in SD processes at the LHC.
- ▶ Gay Ducati *et al.*[, Phys.Rev.D 81 \(2010\) 054034](https://arxiv.org/pdf/1002.4043.pdf) 14 TeV, Resolved Pomeron, $\sigma_{\gamma p} = 178 \mu b (R_{c\bar{c}} = 2.3\%)$
- ▶ Kopeliovich *et al.*[, Phys.Rev.D 76 \(2007\) 034019:](https://arxiv.org/pdf/hep-ph/0702106.pdf) Dipole, Leading Twist Mechanisms
- ▶ Łuszczak *et al.*[, Phys. Rev. D 91, 054024 \(2015\):](https://sci-hub.se/https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.054024) Resolved Pomeron, 14 TeV, $|y|$ < 2.5, $p_T > 3.5$ GeV, $D^0 + D^0$, $\sigma_{\mathbb{P}p} = 3555$ nb.
- ▶ Łuszczak *et al.*[, JHEP 02 \(2017\) 089:](https://arxiv.org/pdf/1606.06528.pdf) *k*_t-factorization, 13 TeV, |*y*| < 2.1, *p*_T > 3.5 GeV, *D*⁰ + *D*⁰, *σ*_P*D*_{*p*} = 3–4 *μ*b
- ▶ Siddikov *et al.*[, Phys.Rev.D 102 \(2020\) 7, 076020:](https://arxiv.org/pdf/2008.12446.pdf) Dipole Model, 13 TeV, $R_{c\bar{c}}=1.6\% \rightarrow \sigma_{\mathbb{P}p} \approx 135 \mu b$ predictions regarding charged particle multiplicity dependence

2. Single diffraction, *γ*-*p* process

$$
\sigma(h_1\,h_2 \to XQ\bar{Q}_\,h_2) = \int dx_1\,\int dx_2\ g_1(x_1,\mu^2)\ \gamma_2(x_2,\mu^2)\ \hat{\sigma}(\gamma g \to Q\bar{Q})
$$

- ▶ Strong electromagnetic fields arising around the proton due to relativistic effects may interact directly with the partons inside the proton.
- ▶ Goncalves *et al*[, Nucl.Phys.A 976 \(2018\) 33-45:](https://arxiv.org/pdf/1711.04497.pdf) 13 TeV, |*y*| *<* 10, Dipole Model, *σγp* = 1030 (b-CGC) — 1140 (IP-SAT) nb

Central Diffraction

3. Central diffraction with double P exchange

$$
\sigma(h_1h_2 \to h_1 _XQ\bar{Q}Y _h_2) = \int dx_1 \int dx_2 \ g_1^D(x_1,\mu^2) \ g_2^D(x_2,\mu^2) \ \hat{\sigma}(gg \to Q\bar{Q})
$$

- ▶ Gay Ducati, *et al.*[, Phys. Rev. C 83, 014903 \(2011\):](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.83.014903) 14 TeV, Resolved Pomeron $\sigma_{\text{PP}} = 13.6 \,\mu\text{b} \left(R_{c\bar{c}} = 0.17\% \right)$
- ▶ Łuszczak *et al.*[, Phys. Rev. D 91, 054024 \(2015\):](https://sci-hub.se/https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.054024) 14 TeV, Resolved Pomeron, [|]*y*[|] *<* ²*.*5, *^p^T >* ³*.*5 GeV, *^D*⁰ ⁺ ¯*D*0, *^σ*PP = 177 nb.

4. Central diffraction in *γ,*P exchange

$$
h_1
$$

$$
\sigma(h_1h_2\rightarrow h_1_\mathcal{Q}\bar{Q}Y_\,h_2)=\int dx_1\int dx_2\ \gamma_1(x_1,\mu^2)\ g^D_2(x_2,\mu^2)\ \hat{\sigma}(\gamma g\rightarrow Q\bar{Q})
$$

- ▶ Goncalves *et al*[, Nucl.Phys.A 1000 \(2020\) 121862:](https://arxiv.org/pdf/1911.03453.pdf) *pp* @ 13 TeV, Exclusive, |*η*| *<* 2*.*5, Dipole Model σ_{ν} = 83.2–117.9 nb
- ▶ Goncalves *et al*[, Phys.Rev.D 85 \(2012\) 054019:](https://arxiv.org/pdf/1911.03453.pdf) *pp* @ 14 TeV, Dipole Model, σ_{γ} = 161 nb *pp* @ 14 TeV, Resolved Pomeron, $\sigma_{\gamma P} = 1208$ nb

Central Diffraction (contd.)

5. Central exclusive production in the electromagnetic channel

$$
\sigma(h_1h_2 \to h_1 _Q\bar{Q}_h_2) = \int dx_1 \int dx_2 \ \gamma_1(x_1,\mu^2) \ \gamma_2(x_2,\mu^2) \ \hat{\sigma}(\gamma\gamma \to Q\bar{Q})
$$

► The term $\hat{\sigma}(\gamma \gamma \rightarrow Q\bar{Q})$ is heavily suppressed due to presence of two EM vertices, thus it is not expected to contribute significantly to the signal measured experimentally.

6. Central exclusive production in the strong channel

 $\sigma(h_1h_2 \rightarrow h_1$ *QQ*^{h_2}) ∝ $\hat{\sigma}(gg \rightarrow Q\bar{Q})$

- ▶ Maciuła *et al.*[, Phys.Lett.B 685 \(2010\) 165-169:](https://arxiv.org/pdf/0912.4345.pdf) 2 TeV: $R_{c\bar{c}} = 1\%$
- ▶ Gay Ducati, *et al.*[, Phys. Rev. C 83, 014903 \(2011\):](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.83.014903) 14 TeV: $σ_{\text{PP}} = 0.53 \mu b (R_{c\bar{c}} = 0.007\%)$

Measurement

ATLAS

- ▶ Low-*p^T* charged particle tracking (down to 100 MeV)
- ▶ Calorimeter acceptance [|]*η*[|] *<* ⁴*.*⁹ (rapidity gaps)
- ▶ Dedicated triggers
- ▶ Advanced vertex & track reconstruction software

AFP

- ▶ Forward proton tagging with Roman Pot technology
- ▶ 3D pixel silicon tracker \rightarrow precise reco. of kinematics
- ▶ Acceptance: $0.02 \le \xi = 1 - E_{\text{proton}}/E_{\text{beam}} \le 0.15$
- ▶ High efficiency, low background

Targeted decay modes:

- \blacktriangleright $D^{*\pm} \rightarrow D_0 \pi \rightarrow K \pi \pi$
- \blacktriangleright $D^{\pm} \rightarrow K\pi\pi$
- \blacktriangleright $D_s^{\pm} \rightarrow K K \pi$
- $\blacktriangleright \Delta_C \rightarrow pK\pi$