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History
Main driving forces: gaming and cat videos

Checkers (1959) - Arthur Samuel
Chess (1997) - 11.38 GFLOPS
Jeopardy! (2011) - IBM Watson
Google Brain (2011)
Go (2016) - AlphaGo

https://towardsdatascience.com/onnx-preventing-framework-lock-in-9a798fb34c92

CNN (image classification, object detection, recommender systems)

Recurrent/recursive neural networks (RNNs), sequence modeling, next 
word prediction, translating sounds to words, human language 
translation

Generative models: anomaly detection, pattern recognition, reinforced 
learning...
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Data, data, and more data

128 MB 128 GB

2020
1 TB

1956
5 MB

2024

LHC in numbers: 2013 and now:
Data: 15   PB/year vs 200+ PB/year
Tape: 180 PB   vs 740+ PB 
Disk: 200 PB   vs 570+ PB
HS06: 2M   vs 100+ B

Storing and distributing the data is only one side 
of the challange

→ analysis, simulations
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Main ingredients
Perceptrons:
● Input value(s)
● Weight: the connection between the units
● Bias: the intercept added in a linear equation
● Activation Function

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Other important components: pooling layers, regularization and 
normalization, recurrent layers...
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Transformers and LLMs

Attention layer: 
● helps models focus on the most relevant parts of input data
● assigns weights to each part of the input, indicating how important 

they are for making predictions
● weighted sum of input values, where weights are determined based 

on similarity (usually via dot-product) between queries and keys
● allowing the model to dynamically adapt its focus
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(5000+ citations)

Attention layer: 
● helps models focus on the most relevant parts of input data
● assigns weights to each part of the input, indicating how important 

they are for making predictions
● weighted sum of input values, where weights are determined based 

on similarity (usually via dot-product) between queries and keys
● allowing the model to dynamically adapt its focus



8

Transformers and LLMs

~1.7 trillion 
parameters

arXiv:1706.03762
(5000+ citations)
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2021 May: 417 references
2021 November: 568 references

2022 October: 724 references

2023 June: 849 references

● Track reconstruction
● Quark/gluon jet separation
● Jet reconstruction
● Tuning Monte Carlo event generators
● GAN of detectors
● ...

https://iml-wg.github.io/HEPML-LivingReview/

Matthew Feickert, Benjamin Nachman, arXiv:2102.02770

A Living Review of Machine Learning 
for Particle Physics

Machine Learning in HEP

Today: 

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/search/hep-ph?searchtype=author&query=Feickert%2C+M
https://arxiv.org/search/hep-ph?searchtype=author&query=Nachman%2C+B
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2021 May: 417 references
2021 November: 568 references

2022 October: 724 references

2023 June: 849 references

https://iml-wg.github.io/HEPML-LivingReview/

Matthew Feickert, Benjamin Nachman, arXiv:2102.02770

A Living Review of Machine Learning 
for Particle Physics

Machine Learning in HEP

Today: 1457 references
● Track reconstruction
● Quark/gluon jet separation
● Jet reconstruction
● Tuning Monte Carlo event generators
● GAN of detectors
● ...

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/search/hep-ph?searchtype=author&query=Feickert%2C+M
https://arxiv.org/search/hep-ph?searchtype=author&query=Nachman%2C+B
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Machine Learning in HEP

PRC 53 2358 (1996), Bass, S. A.; Bischoff, A.; Maruhn, J. A.; Stöcker, H.; Greiner, W.c

“The neural network approach yields an improvement in performance of a factor of 
two as compared to classical techniques.”

Neural Networks for Impact Parameter Determination
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Machine Learning in HEP

https://www.kaggle.com/c/trackml-particle-identification
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Machine Learning in HEP
Jet reconstruction

https://doi.org/10.1103/PhysRevC.99.064904

https://doi.org/10.22323/1.364.0312
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Machine Learning in HEP
Separation of quark/gluon jets

https://doi.org/10.1007/JHEP01(2017)110

I. Csabai et al. Nucl.Phys.B 374 (1992) 288-308
I. Csabai et al. Phys.Rev.D 44 (1991) 1905-1908
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Machine Learning in HEP

Zsófia Jólesz, CERN-STUDENTS-Note-2024-170
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Selected topics
- Hadronization and scaling studies
- Proton computed tomography for hadron therapy
- Tuning of Monte Carlo event generators
- Monitoring of plasma channel 
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Nature Reviews Physics 3, 73 (2021)

1. Hard scattering
2. Parton shower

3. Hadronization

Hadron
Hadron

4. Underlying event
arXiv:2408.17130
arXiv:2303.05422
arXiv:2210.10548

Parton shower and hadronization

https://arxiv.org/abs/2408.17130
https://arxiv.org/abs/2303.05422
https://arxiv.org/abs/2210.10548
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Partons → hadrons
Non-perturbative process
Lund-fragmentation (Comput.Phys.Commun. 27 (1982) 243)

Hadronization
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Partons → hadrons
Non-perturbative process
Lund-fragmentation (Comput.Phys.Commun. 27 (1982) 243)

Hadronization
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Monte Carlo data: Pythia 8.303
Monash tune
Rescattering and decays turned off
CR, ISR, FSR, MPI: turned on
Selection: 
 All final particles with
Event number:
 Train: 5M events, √s = 7 TeV

 ~uniform multiplicity distribution

 ~30 GB raw data

Parton level, before the hadronization process
Standardized η, φ, pT, m variables

Charged event multiplicity, mean event transverse momentum

η,φ,pT,m

η,φ,pT,m

η,φ,pT,m
η,φ,pT,m

η,φ,pT,m
η,φ,pT,m
η,φ,pT,m

Train and validation sets
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Used hardwares: Nvidia Tesla T4, GeForce GTX 1080 
@ Wigner Scientific Computing Laboratory

Framework: Tensorflow 2.4.1, Keras 2.4.0

Stacking more layers: solve complex problems more efficiently, get highly accurate results
BUT:
Vanishing/exploding gradients

Residual blocks with “skip connections”
ResNet:

Models
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Total event multiplicity: ✓
Mean transverse momentum vs event multiplicity: ✓

Proton-proton @ 7 TeV, Training + Validation
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2.76 TeV 5.02 TeV 13 TeV

Test of KNO-scaling for the predictions
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Scaling function for multiplicities at various energies:

Charged hadron multiplicities: good overlap and agreement
Nucl.Phys.B Proc.Suppl. 92 (2001) 122-129 

small
large

Test of KNO-scaling for the predictions
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Selected topics
- Hadronization and scaling studies
- Proton computed tomography for hadron therapy
- Tuning of Monte Carlo event generators
- Monitoring of plasma channel 
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Proton Computed Tomography

Layout figure of HIT Centre (Heidelberg)

● Cancer treatment: 
surgery, chemotherapy, 
radiotherapy, 
immunotherapy

● Radiotherapy: uses 
ionizing particles

Difficulty: difference between the absorption of photons 
and the energy loss of protons → 
conversion is not accurate between Hounsfield units and 
relative stopping power

arXiv:2212.00126
arXiv:2410.<...>
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Proton Computed Tomography

The cross-sectional image (A) and the photograph (B) of the 
ALPIDE chip

The Bergen pCT

Irradiating the phantom 
with  high energy 

(~100 MeV) protons

Detector system senses 
the signals

Processing the signals

Reconstructing the image

● Bergen pCT 
Collaboration

● Goal: proton CT 
based on the high-
energy particle 
detectors used in 
the CERN ALICE 
collaboration 
(technology 
transfer)

● The detector system 
is based on the 
ALPIDE chip
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Proton Computed Tomography
Track reconstruction 
from detector signals

Most likely path 
determination

Image 
reconstruction

Reconstructed RSP map
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Selected topics
- Hadronization and scaling studies
- Proton computed tomography for hadron therapy
- Tuning of Monte Carlo event generators
- Monitoring of plasma channel 
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Monte Carlo parameter tuning
Simulation of one proton-proton collision event: complicated...
1) Perturbative QCD calculations

2) Additional phenomenological processes: MPI, colour reconnection, 
hadronization scheme...

3) Compromise: computational time ←→ precision
 Tons of random numbers

4) Empirical parameters: need to be tuned

arXiv:1901.04220
arXiv:1811.02131
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Monte Carlo parameter tuning
Simulation of one heavy-ion collision event: even more complicated...
1) Perturbative QCD calculations

2) Additional phenomenological processes: MPI, colour reconnection, 
hadronization scheme...

3) Compromise: computational time ←→ precision
 Tons of random numbers

4) Empirical parameters: need to be tuned
5) Multiple nucleon-nucleon interactions
6) Additional nuclear effects: jet quenching, Cronin enhancement,
7) shadowing..

arXiv:1901.04220
arXiv:1811.02131
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Monte Carlo parameter tuning
Tuning: set the empirical parameters to fit the experimental data
→ basically „just” an iterative χ2 minimization

sample→calculate→minimize→repeat

YODA (YODA –  Yet more Objects for Data Analysis)
Rivet (Rivet – Robust Independent Validation of Experiment and Theory)
Professor (Tuning tool for Monte Carlo event generators)
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Monte Carlo parameter tuning

https://doi.org/10.1103/PhysRevLett.120.042003

https://doi.org/10.1016/j.cpc.2021.107908
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Selected topics
- Hadronization and scaling studies
- Proton computed tomography for hadron therapy
- Tuning of Monte Carlo event generators
- Monitoring of plasma channel 
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Accelerating medium: Rb plasma: 10 m length, 1014 − 1015 cm−3 

density. Chamber diameter: 4 cm
Experiment motivation: determine plasma parameters via Schlieren 
imaging
arXiv:2205.12731

CERN–AWAKE Experiment: accelerate electrons in the wake field of proton
Microbunches: Nuclear Instruments and Methods in Physics Research Section A, 829 (2016) 76-82

Monitoring plasma channel 
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Monitoring plasma channel 
Flexible network design
Precise prediction of the plasma parameters
Robust for variable experimental conditions
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Thank you for your attention!Thank you for your attention!
The research was supported by OTKA grants K135515, 2021-4.1.2-NEMZ_KI-2024-00031 and 2021-4.1.2-NEMZ_KI-2024-00033, the Wigner Scientific 
Computating Laboratory (former Wigner GPU Laboratory) and RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intelligence 
National Laboratory.

Advanced machine learning applications are booming (in HEP)

Getting more and more accessible

Selected topics (among others) related to our research group:

- Hadronization and scaling studies

- Proton computed tomography for hadron therapy

- Tuning of Monte Carlo event generators

- Monitoring of plasma channel 

Summary
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