Cosmological evolution of a Peccei-Quinn field with small self-coupling and implications for Axion Dark Matter

Paweł Kozów

University of Warsaw

Theory and Experiment in High Energy Physics Czech Technical University in Prague, 3 October 2024

based on PK, M. Olechowski, JCAP 06 (2023) 043

2 Radiative corrections

3 Φ evolution during inflation – geometric corrections

$(4) \Phi$ evolution after inflation – thermal corrections

(5) Numerical Results: influence of each correction on axion relics

6 Summary and Conclusions

- Axions (QCD axions and ALPs)
 - pseudo Goldstone bosons of spontaneously broken Peccei-Quinn global $U(1)_{PQ}$ symmetry
 - phase component of complex PQ scalar

$$\Phi = rac{1}{\sqrt{2}} S e^{i a/f_a} = rac{1}{\sqrt{2}} S e^{i heta}$$

• $U(1)_{PQ}$ is anomalous and axion potential is developed (non-perturbatively) long after inflation

$$V_a \sim m_a^2 f_a^2 \left(1 - \cos rac{a}{f_a}
ight) = m_a^2 f_a^2 \left(1 - \cos heta
ight)$$

Axions are interesting candidates for Dark Matter

$$V(\Phi) = \lambda_{\Phi} \left(|\Phi|^2 - \frac{f_a^2}{2} \right)^2 = \frac{\lambda_{\Phi}}{4} \left(S^2 - f_a^2 \right)^2, \qquad m_5^2 = 2\lambda_{\Phi} f_a^2$$

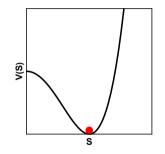
Two basic scenarios:

Axions are interesting candidates for Dark Matter

$$V(\Phi) = \lambda_{\Phi} \left(|\Phi|^2 - \frac{f_a^2}{2} \right)^2 = \frac{\lambda_{\Phi}}{4} \left(S^2 - f_a^2 \right)^2, \qquad m_S^2 = 2\lambda_{\Phi} f_a^2$$

Two basic scenarios:

- (i) $m_S \gg H_I$ (' $U(1)_{PQ}$ broken')
 - $S = f_a$ during and after inflation
 - θ_i determined by some stochastic process (the phase transition from unbroken to broken $U(1)_{PQ}$)
 - \Rightarrow If θ_i not aligned with the minimum of V_a Axion starts oscillating when $H \lesssim \frac{1}{3}m_a$ \rightarrow cold dark matter (CDM)

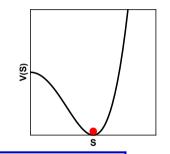


Axions are interesting candidates for Dark Matter

$$V(\Phi) = \lambda_{\Phi} \left(|\Phi|^2 - \frac{f_a^2}{2} \right)^2 = \frac{\lambda_{\Phi}}{4} \left(S^2 - f_a^2 \right)^2, \qquad m_5^2 = 2\lambda_{\Phi} f_a^2$$

Two basic scenarios:

- (i) $m_5 \gg H_I$ (' $U(1)_{PQ}$ broken')
 - $S = f_a$ during and after inflation
 - θ_i determined by some stochastic process (the phase transition from unbroken to broken $U(1)_{PQ}$)
 - \Rightarrow If θ_i not aligned with the minimum of V_a Axion starts oscillating when $H \lesssim \frac{1}{3}m_a$ \rightarrow cold dark matter (CDM)



Axion field *a* is massless during inflation \Rightarrow it has stochastic quantum fluctuations: *a* changes on average by $H_I/2\pi$ during each Hubble time, in each Hubble volume

• θ has dispersion $\langle \delta \theta_i^2 \rangle$, generated by quantum fluctuations during inflation \Rightarrow Isocurvature perturbations of axion CDM $\langle \delta \theta_i^2 \rangle \propto (H_I/f_a)^2 \ll 1$

If saxion field S is light enough it also fluctuates during inflation

(ii) $m_S \ll H_I$

During inflation stochastic fluctuations of a light field "compete" with classical evolution caused by its potential

 \rightarrow After long enough time the system approaches the Fokker-Planck probability distribution: $P_{\rm eq}(\Phi) \propto \exp\left(-\frac{8\pi^2}{3} \frac{V(\Phi)}{H_{\star}^4}\right)$ [Starobinsky, Yokoyama '94]

If saxion field S is light enough it also fluctuates during inflation

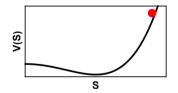
During inflation stochastic fluctuations of a light field "compete" with classical evolution caused by its potential

 \rightarrow After long enough time the system approaches the Fokker-Planck probability distribution: $P_{eq}(\Phi) \propto \exp\left(-\frac{8\pi^2}{3} \frac{V(\Phi)}{H^4}\right)$ [Starobinsky, Yokoyama '94]

After (long enough) inflation:

(ii) $m_S \ll H_I$

- initial value of saxion field S_i (and θ_i) is determined by stochastic quantum fluctuations (ambiguity of S_i)
- the fields have dispersions, $\langle \delta S_i^2 \rangle$ and $\langle \delta \theta_i^2 \rangle$, generated by the stochastic quantum fluctuations during the last \sim 50 e-folds of inflation



If saxion field S is light enough it also fluctuates during inflation

During inflation stochastic fluctuations of a light field "compete" with classical evolution caused by its potential

 \rightarrow After long enough time the system approaches the Fokker-Planck probability distribution: $P_{eq}(\Phi) \propto \exp\left(-\frac{8\pi^2}{3} \frac{V(\Phi)}{H_{*}^4}\right)$ [Starobinsky, Yokoyama '94]

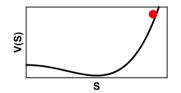
After (long enough) inflation:

(ii) $m_S \ll H_I$

- initial value of saxion field S_i (and θ_i) is determined by stochastic quantum fluctuations (ambiguity of S_i)
- the fields have dispersions, $\langle \delta S_i^2 \rangle$ and $\langle \delta \theta_i^2 \rangle$, generated by the stochastic quantum fluctuations during the last \sim 50 e-folds of inflation

This non-trivial dynamics after inflation may lead to production of a as

- cold dark matter, e.g. kinetic misalignment mechanism e.g. [Co, Harigaya, 19']
- warm dark matter (WDM), e.g. parametric resonance production e.g. [Harigaya et al 15']
 - Bounds on isocurvature perturbations lead to very strong upper bounds on the self-coupling, $\lambda_{\Phi} \lesssim 10^{-20} \ll 1$ (flat potentials motivated by SUSY)



If $\lambda_{\Phi} \lll 1$ one should consider corrections

I. radiative

II. geometric (curvature of space-time)

III. thermal

In this talk I will concentrate on (ii) $m_S \ll H_I$, i.e. models in which PQ field has nontrivial dynamics during and after inflation

The goal is to check influence of I, II, III on axion contribution to CDM and WDM

2 Radiative corrections

④ Φ evolution during inflation – geometric corrections

4 evolution after inflation – thermal corrections

(5) Numerical Results: influence of each correction on axion relics

6 Summary and Conclusions

I. <u>Radiative corrections</u> (Coleman-Weinberg (CW) potential): We adopt Gildener-Weinberg approach

• μ - scale at which running PQ self-coupling vanishes: $\lambda_{\Phi}(\mu) = 0$

I. <u>Radiative corrections</u> (Coleman-Weinberg (CW) potential): We adopt Gildener-Weinberg approach

- μ scale at which running PQ self-coupling vanishes: $\lambda_{\Phi}(\mu) = 0$
- The PQ scalar Φ couples to some scalars ϕ_i and some fermions ψ_i

$$\mathcal{L} \supset -\sum_{i} \left(\frac{1}{2} m_i^2 \phi_i^2 + \frac{1}{2} \lambda_i |\Phi|^2 \phi_i^2 \right) - \sum_{j} y_j \Phi \overline{\psi}_j \psi_j$$
$$\rightarrow \mathcal{V}_{CW}(\Phi) = \frac{1}{64\pi^2} \sum_{\text{scalars}} M_{\phi_i}^4 \left[\ln \left(\frac{M_{\phi_i}^2}{\mu^2} \right) - \frac{3}{2} \right] - \frac{4}{64\pi^2} \sum_{\text{fermions}} M_{\psi_j}^4 \left[\ln \left(\frac{M_{\psi_j}^2}{\mu^2} \right) - \frac{3}{2} \right]$$
$$M_{\phi_i}^2 = m_i^2 + \lambda_i |\Phi|^2 , \qquad M_{\psi_i}^2 = y_i^2 |\Phi|^2$$

I. <u>Radiative corrections</u> (Coleman-Weinberg (CW) potential): We adopt Gildener-Weinberg approach

- μ scale at which running PQ self-coupling vanishes: $\lambda_{\Phi}(\mu) = 0$
- The PQ scalar Φ couples to some scalars ϕ_i and some fermions ψ_j

$$\mathcal{L} \supset -\sum_{i} \left(\frac{1}{2} m_i^2 \phi_i^2 + \frac{1}{2} \lambda_i |\Phi|^2 \phi_i^2 \right) - \sum_{j} y_j \Phi \overline{\psi}_j \psi_j$$

$$\rightarrow V_{CW}(\Phi) = \frac{1}{64\pi^2} \sum_{\text{scalars}} M_{\phi_i}^4 \left[\ln \left(\frac{M_{\phi_i}^2}{\mu^2} \right) - \frac{3}{2} \right] - \frac{4}{64\pi^2} \sum_{\text{fermions}} M_{\psi_j}^4 \left[\ln \left(\frac{M_{\psi_j}^2}{\mu^2} \right) - \frac{3}{2} \right]$$

$$M_{\phi_i}^2 = m_i^2 + \lambda_i |\Phi|^2 , \qquad M_{\psi_j}^2 = y_j^2 |\Phi|^2$$

Simple model:

$$y_j = y,$$
 $\lambda_i = \lambda,$ $m_i^2 = m^2,$ $N_{scalars} = 4N_{fermions}$

Bosonic contribution must dominate for large values of S

$$y^2 = (1 - \delta)\lambda, \qquad 0 \le \delta \le 1$$

• quasi-SUSY when $\delta \ll 1$ • SUSY limit: $m \to 0$ and $\delta \to 0 \Rightarrow V_{CW} \to 0_{8/31}$

2 Radiative corrections

3 Φ evolution during inflation – geometric corrections

$\blacksquare \Phi$ evolution after inflation – thermal corrections

(5) Numerical Results: influence of each correction on axion relics

6 Summary and Conclusions

II. Geometric corrections:

R

 $12H_{1}^{2}$

CW potential in curved space-time

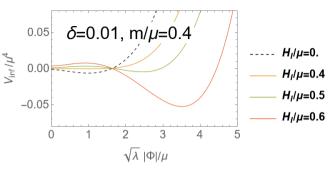
[Markkanen, Nurmi, Rajantie, Stopyra, 18'], [Hardwick, Markkanen, Nurmi, 19']

$$V(\Phi) = \frac{1}{64\pi^2} \sum_{\text{bosons}} \left\{ M_{\phi_i}^4 \left[\ln\left(\frac{\left|M_{\phi_i}^2\right|}{\mu^2}\right) - \frac{3}{2} \right] + \frac{R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - R_{\mu\nu}R^{\mu\nu}}{90} \ln\left(\frac{\left|M_{\phi_i}^2\right|}{\mu^2}\right) \right\} - \frac{4}{64\pi^2} \sum_{\text{fermions}} \left\{ M_{\psi_j}^4 \left[\ln\left(\frac{\left|M_{\psi_j}^2\right|}{\mu^2}\right) - \frac{3}{2} \right] - \frac{\frac{7}{8}R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + R_{\mu\nu}R^{\mu\nu}}{90} \ln\left(\frac{\left|M_{\psi_j}^2\right|}{\mu^2}\right) - \frac{1}{2} \right] - \frac{1}{8}R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + \frac{1}{12}R$$

$$M_{\phi_i}^2 = m^2 + \lambda |\Phi|^2 + (\xi - \frac{1}{6})R, \qquad M_{\psi_j}^2 = y^2 |\Phi|^2 + \frac{1}{12}R$$

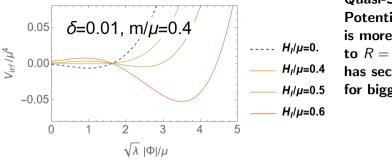
$$\boxed{\text{Inflation} \text{Matter Domination} \text{Radiation Domination}}$$

3 <i>H</i> ²	0



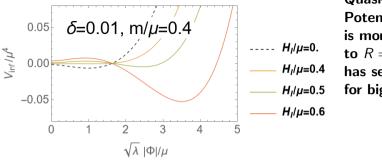
Quasi-SUSY limit: Potential during inflation (solid lines) is more complicated (as compared to R = 0 case, dashed line) and usually has second deeper minimum for bigger value of S

$$S_i^2 \sim rac{(3-12\xi)H_l^2-m^2}{rac{\delta\lambda}{ heta_i}}$$
 $heta_i = "accidental"$



Quasi-SUSY limit: Potential during inflation (solid lines) is more complicated (as compared to R = 0 case, dashed line) and usually has second deeper minimum for bigger value of S

- $S_i^2 \sim rac{(3-12\xi)H_l^2-m^2}{\delta\lambda}$ $heta_i = "accidental"$
- Just after inflation fields S and θ are almost homogeneous
- For some time PQ field is almost constant due to Hubble friction
- When $H \approx m_S^{eff}/3$, saxion field *S* starts to oscillate, and the energy stored transfers to particles mainly via parametric resonance
 - \rightarrow produced axions contribute to WDM [the picture in $\lambda_{\Phi}(S^2 f_a^2)^2$: Shtanov et al, Kofman et al '94]



Quasi-SUSY limit: Potential during inflation (solid lines) is more complicated (as compared to R = 0 case, dashed line) and usually has second deeper minimum for bigger value of S

$$S_i^2 \sim rac{(3-12\xi)H_I^2 - m^2}{\delta\lambda} \ heta_i = "accidental"$$

- Just after inflation fields S and θ are almost homogeneous
- For some time PQ field is almost constant due to Hubble friction
- When $H \approx m_S^{eff}/3$, saxion field S starts to oscillate, and the energy stored transfers to particles mainly via parametric resonance
 - \rightarrow produced axions contribute to WDM [the picture in $\lambda_{\Phi}(S^2 f_a^2)^2$: Shtanov et al, Kofman et al '94]

Different corrections to the simple potential may play – sometimes very important – role.

2 Radiative corrections

3 Φ evolution during inflation – geometric corrections

4 Φ evolution after inflation – thermal corrections

(5) Numerical Results: influence of each correction on axion relics

6 Summary and Conclusions

III. Thermal corrections:

Our model

- Thermal effects depend on the same fields ϕ_i, ψ_j and couplings λ, y, m as the CW potential does
- We concentrate on two kinds of thermal effects
 - thermal corrections to the potential of the PQ field
 - thermalization of oscillations

III. Thermal corrections:

Our model

- Thermal effects depend on the same fields ϕ_i, ψ_j and couplings λ, y, m as the CW potential does
- We concentrate on two kinds of thermal effects
 - thermal corrections to the potential of the PQ field
 - thermalization of oscillations
- Typically oscillations of the saxion field, which start at $H \approx \frac{1}{3}m_S^{eff}$, are due to the thermal mass correction
 - Saxion oscillates in potential dominated by thermal mass $\frac{1}{2}\frac{\alpha}{24}T^2S^2$ term
 - \Rightarrow particle production via parametric resonance very much delayed (because $\dot{\omega}_k/\omega_k^2 \lesssim 1$)

III. Thermal corrections:

Our model

- Thermal effects depend on the same fields ϕ_i, ψ_j and couplings λ, y, m as the CW potential does
- We concentrate on two kinds of thermal effects
 - thermal corrections to the potential of the PQ field
 - thermalization of oscillations
- Typically oscillations of the saxion field, which start at $H \approx \frac{1}{3}m_S^{eff}$, are due to the thermal mass correction
 - Saxion oscillates in potential dominated by thermal mass $\frac{1}{2}\frac{\alpha}{24}T^2S^2$ term
 - \Rightarrow particle production via parametric resonance very much delayed (because $\dot{\omega}_k/\omega_k^2 \lesssim 1$)
- Resonant production delayed at least until temperature drops below $\tilde{\mathcal{T}}$ at which thermal mass domination fades away
- How much has the amplitude of saxion oscillations A_S decreased till such time?

- Production of cold and warm axions depends strongly on $A_S(\tilde{T})/S_{min,0}$ rough estimate $\frac{A_S(\tilde{T})}{S_{min,0}} \approx \mathcal{O}\left(\frac{1}{\sqrt{\epsilon\lambda}} \frac{m}{\mu} \frac{H_l}{10^{18} \, \text{GeV}}\right)$
- scenario "A": $A_{S}(\tilde{T}) \gg S_{min,0}$
 - Less warm axions produced (parametric resonance)
- scenario "B": $A_{S}(\tilde{T}) \sim S_{min,0}$
 - More warm axions produced (tachyonic instability)
- in both scenarios A and B:
 - Cold axions from misalignment
 - Saxion oscillations "remember" the initial value θ_i

 \to relic density of cold axions depends on stochastic processes during and before inflation \to scale invariant isocurvature CDM perturbations

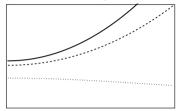
- Production of cold and warm axions depends strongly on $A_S(\tilde{T})/S_{min,0}$ rough estimate $\frac{A_S(\tilde{T})}{S_{min,0}} \approx \mathcal{O}\left(\frac{1}{\sqrt{\epsilon\lambda}} \frac{m}{\mu} \frac{H_l}{10^{18} \, \text{GeV}}\right)$
- scenario "A": $A_{S}(\tilde{T}) \gg S_{min,0}$
 - Less warm axions produced (parametric resonance)
- scenario "B": $A_{S}(\tilde{T}) \sim S_{min,0}$
 - More warm axions produced (tachyonic instability)
- in both scenarios A and B:
 - Cold axions from misalignment
 - Saxion oscillations "remember" the initial value θ_i

 \to relic density of cold axions depends on stochastic processes during and before inflation \to scale invariant isocurvature CDM perturbations

- scenario "C": $A_{S}(\tilde{T}) \ll S_{min,0}$:
 - Tachyonic instability important
 - Dynamics may "forget" the initial value $\theta_i \rightarrow \text{if so, relic density of cold axions}$ depends on stochastic processes after inflation \rightarrow white-noise isocurvature
 - Tachyonic instability makes S oscillations decay very quickly [Felder, Garcia-Bellido, Greene, Kofman, Linde, Tkachev, 00'], [Felder, Kofman, Linde, 01'] warm axions may be produced depending on details of the $V_{CW}(\Phi)$ potential 14/31

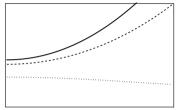
• C1: no barrier between S = 0 and global minimum potential which changes with temperature is very shallow at $T \sim \tilde{T}$

• very few warm axions produced via tachyonic instability

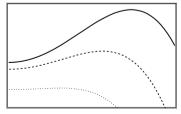


• C1: no barrier between S = 0 and global minimum potential which changes with temperature is very shallow at $T \sim \tilde{T}$

• very few warm axions produced via tachyonic instability



- C2: barrier between S = 0 and global minimum (for a range of temperatures) global minimum has a non-negligible depth at tachyonic instability
 - a lot of warm axions produced via tachyonic instability



2 Radiative corrections

④ Φ evolution during inflation – geometric corrections

$\blacksquare \Phi$ evolution after inflation – thermal corrections

5 Numerical Results: influence of each correction on axion relics

6 Summary and Conclusions

	λ	δ	m/μ	$\mu [{ m GeV}]$	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^3$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4\cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^3$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

Number densities n of warm axions are evaluated at a common T and in units T^3

 $n \rightarrow n(T)/T^3$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9\cdot 10^3$	$3.0\cdot 10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4\cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^2$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

I. Radiative corrections: may change the amount of warm axions by factor of a few compared to n_{tree} (depending on m/μ , δ and H_I/μ)

	λ	δ	m/μ	$\mu [{ m GeV}]$	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0\cdot 10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

II. Geometric corrections: $n_{CW+G} \gtrsim n_{CW}$ (effect increases with decreasing δ)

•
$$n_{CW+G}/n_{CW}\sim O(5)$$
 for $\delta=0.1$

•
$$n_{CW+G}/n_{CW}\sim O(30)$$
 for $\delta=0.001$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57\cdot 10^5$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^5$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^3$	$2.2 \cdot 10^3$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^3$	$3.0 \cdot 10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6\cdot 10^5$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

III. Thermal corrections: Scenario C2(barrier) n_{CW+T} , $n_{CW+T+G} \gg n_{CW}$

	λ	δ	m/μ	$\mu [{ m GeV}]$	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^5$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

- III. Thermal corrections: Scenario C2(barrier)
 - Strong dependence on m/μ
 - scenarios $C2 \rightarrow C1$ (e.g. P_6)

 $n_{CW+T}, n_{CW+T+G} \gg n_{CW}$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6\cdot 10^5$	$2.5 \cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

III. Thermal corrections: Scenario C1(no barrier) n_{CW+T} , $n_{CW+T+G} \approx 0$

2 Radiative corrections

3 Φ evolution during inflation – geometric corrections

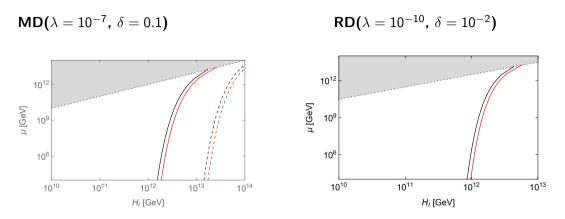
4 Φ evolution after inflation – thermal corrections

(5) Numerical Results: influence of each correction on axion relics

6 Summary and Conclusions

- Non-trivial dynamics of Peccei-Quinn requires extremely small self-coupling
- Crucial role is played by various corrections:
 - radiative, geometric, and thermal
- During inflation
 - saxion potential has (second) minimum at $S \gg S_{min,0}$
 - $\langle S_i \rangle$, $\langle \theta_i \rangle$, $\langle \delta S_i^2 \rangle$, $\langle \delta \theta_i^2 \rangle$ determined by quantum fluctuations during inflation
 - $\langle S_i \rangle$ close to the position of the minimum at $S \gg S_{min,0}$
 - constraints from DM isocurvature relaxed
 - very long inflation not needed?
- After inflation
 - thermal corrections are very important for the evolution of saxion field *S*
 - production of axions can be via parametric resonance or tachyonic instability, and it depends quite strongly on details of a model
 - axion contribution to WDM may vary by many orders of magnitude
 - isocurvature perturbations of axion CDM may be standard (scale-invariant generated during inflation) or may have the form of white noise
- Numerical simulations necessary for precise predictions

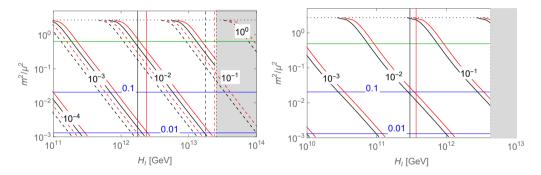
BACK UP



For parameters to the left from the black/red solid lines, the S oscillations start due to the thermal mass

Some examples – lines of constant $A_S(\tilde{T})/S_{\min,0}$

MD(
$$\lambda = 10^{-7}$$
, $\delta = 0.1$)
RD($\lambda = 10^{-10}$, $\delta = 10^{-2}$)



⇒ scenario B typically only when both H_I and m/μ are \sim maximal allowed ⇒ scenario C typically when either H_I or m/μ is smaller

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^3$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9\cdot 10^3$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4\cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6\cdot 10^5$	$2.5 \cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

 P_8, P_9, P_{11} - scenario B, $n_{CW+T}, n_{CW+T+G} \gg n_{CW}$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9\cdot 10^3$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6\cdot 10^5$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

 P_8, P_9, P_{11} - scenario B, geometric correction increase $n: n_{CW+T} \leq n_{CW+T+G}$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57\cdot 10^5$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

 $P_{1 \div 6, 10, 12 \div 14}$ - scenario C2, geometric correction decreases $n : n_{CW+T}$ n_{CW+T+G}

 \gtrsim

- thermal corrections neglected (s)axions produced by parametric resonance:
 - $n_{CW+G} \gtrsim n_{CW}$

$$n_{CW} \propto \delta^{-5/8} \lambda^{-5/4} H_I^{3/2} T^3, \qquad n_{CW+G} \propto \delta^{-1} \lambda^{-5/4} H_I^{3/2} T^3$$

dependence on m,μ very weak

• thermal corrections accounted –(s)axions produced by tachyonic instability:

- scenario C more natural than B and especially A
- $\mathbf{C} \rightarrow C1$ (no barrier), C2(barrier for some T)
- scenario C1 : n_{CW+T} , $n_{CW+T+G} \approx 0$
- scenario C2 : n_{CW+T} , $n_{CW+T+G} \gg n_{CW}$

$$n_{CW+T}, n_{CW+T+G} \propto \lambda^{-1/2} \left(rac{m}{\mu}
ight)^{-2} T^3$$

dependence on δ , μ and H_I much weaker, $n_{CW+T+G} \lesssim n_{CW+T}$

• dedicated numerical computations for C1 - C2 transition region, scenario B ...

scenario D: early thermalization : $T_{\rm th} > \widetilde{T}$

• interactions with thermal plasma – modification to EOM:

early thermalization if:

$$\frac{m^2}{\mu^2} \ln\left(\frac{e\mu^2}{m^2}\right) \lesssim \frac{15n_{\rm eff}(\widetilde{T})}{\pi g_* N_s} \, \alpha_{\rm th}^2 \lambda^2 \frac{M_{P_{\rm c}}^2}{\mu^2}$$

 $lpha_{
m th}=lpha_{s}\sim 0.1\Rightarrow$ RHS bigger than 1, if $\mu\lesssim\lambda\cdot 10^{17}~{
m GeV}$

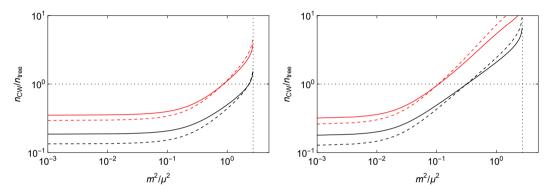


Figure: The ratio of densities of warm axions produced via a parametric resonance with (n_{CW}) and without (n_{tree}) radiative corrections taken into account as a function of m^2/μ^2 . The relevant parameters are fixed as: $\delta = 0.1$ (left panel) and $\delta = 0.01$ (right panel); $H_l/\mu = 5$ (red curves) and $H_l/\mu = 10^3$ (black curves). The solid (dashed) lines correspond to situation when the axions are produced after (before) the end of the reheating process.

• We will focus on

- CW with only geometric corrections (*CW* + *G*)
- CW with only thermal corrections (CW + T)
- CW with both geometric and thermal corrections (CW + T + G)

 n_{CW} , n_{CW+G} , n_{CW+T} and n_{CW+T+G} are rescaled to a common T (in units T^3)

 n_{CW} vs n_{tree} : $n_{CW}/n_{tree} \leqslant 1$ depending on m/μ , δ and H_I/μ

• Two different approximations:

•

$$n_{CW}, n_{CW+G} \sim \frac{1}{2} \left. \frac{V_{CW}}{m_S} \right|_{S=S_i}$$
(parametric resonance)
•

$$n_{CW+T}, n_{CW+T+G} \sim \frac{1}{2} \frac{\Delta V_{tot}}{m_S} \right|_{T \sim \tilde{T}}$$
(tachyonic instability)

 ΔV_{tot} =(available potential energy), m_S =(mass at the global minimum)

- Cold axions produced via the conventional misalignment mechanism
- *n_{a, cold}* often determined by stochastic processes during inflation...
 ...despite V_{full}(Φ) is in the unbroken phase for some time

saxion keeps oscillating and carries the initial PQ phase θ_i

• in the end one should compare

 $\rho_{a, warm} + \rho_{a, cold} \leftrightarrow \rho_{DM, observed}$

 \Rightarrow extra flexibility:

if $\rho_{a, warm}$ too small (or vanishing...), often possible to complement with $\rho_{a, cold}$ (choice of θ_i)

Number densities (n.d.) of ALP WDM n_i (in units T^3):

- radiative corrections: n_{CW} vs n_{tree} : $n_{CW}/n_{tree} \leq 1$ (depending on m/μ , δ and H_I/μ)
 - $n_{CW} \equiv$ (n.d. of warm ALP for "pure" CW potential)
 - $n_{tree} \equiv (n.d. \text{ of warm ALP for the corresponding Mexican hat potential})$
- **2** We will take *n_{CW}* as the reference and compare it with:
 - $n_{CW+G} \equiv$ (CW with only geometric corrections)
 - $n_{CW+T} \equiv$ (CW with only thermal corrections)
 - $n_{CW+T+G} \equiv$ (CW with both geometric and thermal corrections)

 n_{CW} , n_{CW+G} , n_{CW+T} and n_{CW+T+G} are rescaled to a common T

• We use the full thermal potential

$$V_{T}(\Phi) = \frac{T^{4}}{2\pi^{2}} \left[\sum_{\text{bosons}} J_{+} \left(\frac{M_{\phi_{i}}}{T} \right) + 4 \sum_{\text{fermions}} J_{-} \left(\frac{M_{\psi_{j}}}{T} \right) \right]$$
$$J_{\pm}(y) = \pm \int_{0}^{\infty} x^{2} \ln \left[1 \mp \exp\left(-\sqrt{x^{2} + y^{2}} \right) \right] dx$$

Number densities (n.d.) of ALP WDM n_i:

- **1** radiative corrections: n_{CW} vs n_{tree} : $n_{CW}/n_{tree} \leq 1$ (depending on m/μ , δ and H_I/μ)
 - $n_{CW} \equiv$ (n.d. of warm ALP for "pure" Gildener-Weinberg potential)
 - $n_{tree} \equiv (n.d. \text{ of warm ALP for the corresponding Mexican hat potential})$
- **2** We will take *n_{CW}* as the reference and compare it with:
 - $n_{CW+G} \equiv$ (CW with only geometric corrections)
 - $n_{CW+T} \equiv$ (CW with only thermal corrections)
 - $n_{CW+T+G} \equiv$ (CW with both geometric and thermal corrections)

 n_{CW} , n_{CW+G} , n_{CW+T} and n_{CW+T+G} are rescaled to a common T (and in units T^3)