Self-Excited Gravitational Instantons

Martin Krššák

Department of Theoretical Physics Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava, Slovakia

October 2, 2024

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Comenius University Bratislava

Motivation

• In QFT we usually consider Wick rotated $t \rightarrow i\tau$ Euclidean path integrals

$$Z = \int_{\mathcal{M}} d[\psi] e^{-\mathcal{S}^{t}}$$

- Path integral is dominated by a finite Euclidean action solutions: instantons
- In Yang-Mills case very well-studied
 - non-trivial vacuum structure (...and more...)
 - link between physics of gauge fields and topology
- Can we do the same in a case of gravity?
 - Yes: (Hawking) Eguchi, Hanson 1970s
 - Can we do it better?

Based on

M. Krššák: Self-Excited Gravitational Instantons, ArXiv:2408.01140

Yang-Mills Theory

- Non-abelian gauge theory:
 - **Connection 1-form:** $A = A_{\mu}dx^{\mu}$, where $A_{\mu} = A^{a}{}_{\mu}\tau_{a}$ and τ_{a} are generators of SU(N) group
 - Field strength 2-form $F = \frac{1}{2}F_{\mu\nu}dx^{\mu} \wedge dx^{\nu}$

$$F = DA = dA + A \wedge A$$

Satisfies sourceless field equations

DF = 0 (Bianchi Identity) $D \star F = 0$ (Field Equations)

Bianchi identity is automatic, and FE comes from the YM action

 $S_{\rm YM} = \int_{\mathcal{M}} {\rm Tr}\, F \wedge \star F$

BPST Instanton (Belavin-Polyakov-Schwarz-Tyupkin 1975)

Consider an ansatz with (anti)-self dual field strength

 $F = \pm \star F$

- Since any F obeys the Bianchi identity DF = 0, then self-dual F satisfies $D \star F = 0$ as well
- Self-dual F are automatic solutions of YM equations; instead of set of 2nd ODE, we solve only the self-duality condition (1st ODE)
- The YM action reduces to

$$\tilde{S}_{YM} = \pm \int_{\mathcal{M}} \operatorname{Tr} F \wedge F$$

which is a total derivative

BPST Instanton Action and BPS Bound

• The YM action for the BPST self-dual solutions $F = \pm \star F$ is

$$\tilde{\mathcal{S}}_{\rm YM} = \pm \int_{\mathcal{M}} \operatorname{Tr} F \wedge F = \pm \int_{\mathcal{M}} dK = \pm 8\pi^2 k$$

Where K is the Chern-Simons form

$$K = \frac{1}{8\pi^2} \operatorname{Tr} \left(F \wedge A - \frac{1}{3} A \wedge A \wedge A \right)$$

and k is not only finite but an integer, known as the **winding number** or the **second Chern number**

 Moreover, this is the absolute (global) minimum of the YM action known as the Bogomol'nyi–Prasad–Sommerfield (BPS) bound

$$S_{YM} \ge \pi^2 |k|$$

Vacuum Structure in Yang-Mills Theory

- Instantons are the finite Euclidean action solutions of YM field equations
- BPST (anti) self-dual instanton $F = \pm \star F$ has three "nice properties":
 - 1. Automatic solution: simplifies solving field equations
 - 2. Topological solution: makes the action related to a topological invariant
 - **3.** Absolute minimum: not just a critical point of the action but the global minimum. Therefore, they are the **dominant contribution** to the Euclidean path integral

$$Z = \int_{\mathcal{M}} d[\psi] e^{-1}$$

Play important role in

- Many important insights about the non-trivial vacuum structure,
- Possibility of tunneling between different vacua 't Hooft 1976
- Deep connection between physics and topology of gauge fields
- Making the topological term dynamical-> axion

 $\int_{\mathcal{M}} \mathrm{Tr}F \wedge \star F + \theta \mathrm{Tr}F \wedge F$

Gravitational Instantons

- Hawking 1970s: Euclidean path integral approach to quantization of gravity
- Many important results
 - total gravitational action¹ Gibbons, Hawking 1977

$$S_{\text{grav}} = \int_{\mathcal{M}} \sqrt{-g} \overset{\circ}{R} + 2 \oint_{\partial \mathcal{M}} \sqrt{-\gamma} (\mathcal{K} - \mathcal{K}_0)$$

- Derivation of the area law of BH entropy
- Schwarzschild case: total gravitational action $S_{grav}^{E} = 4\pi M^{2}$ is finite and leads to area law (**Gibbons-Hawking instanton**), but
 - ▶ is not self-dual
 - is not a topological invariant
 - ▶ is not a global minimum Gibbons, Hawking, Perry 1978 Indefiniteness of the gravitational action...
- ► Can we find self-dual gravitational analogue of BPST? Hawking 1977, Eguchi and Hanson 1978

¹Riemannian quantities are denoted with \circ above them

General Relativity vs Yang-Mills: Problem

Yang-Mills Theory

Action

$$S_{\rm YM} = \int_{\mathcal{M}} {\rm Tr}\, F \wedge \star F$$

Field Equations

DF = 0 $D \star F = 0$

General Relativity

Action

$$S_{\rm GR} = -\int_{\mathcal{M}} \sqrt{-g} \overset{\circ}{R}$$

- Bianchi identities
 - $\overset{\circ}{R}{}^{\rho}{}_{[\sigma\mu\nu]}=0 \qquad \overset{\circ}{\nabla}{}_{[\lambda}\overset{\circ}{R}{}_{\rho\sigma]\mu\nu}=0$
- Field Equations

$$\overset{\circ}{R}_{\mu
u} = 0$$

Do not look alike!

Cartan Formalism and General Relativity

- To make them look alike follow Cartan
- Introduce
 - tetrad 1-form $h^a = h^a_{\ \mu} dx^{\mu}$ related to the (Euclidean) metric $g_{\mu\nu} = \delta_{ab} h^a_{\ \mu} h^b_{\ \nu}$
 - connection 1-form $\hat{\omega}^a{}_b = \hat{\omega}^a{}_{b\mu}dx^{\mu}$
- Defining
 - **Curvature 2-form** $\mathring{\mathcal{R}}^a{}_b = \frac{1}{2} \mathring{\mathcal{R}}^a{}_{b\mu\nu} dx^{\mu} \wedge dx^{\nu}$ with $\mathring{\mathcal{R}}^{\alpha}{}_{\beta\mu\nu} = h_a{}^{\alpha} h^b{}_{\beta} \mathring{\mathcal{R}}^a{}_{b\mu\nu}$ being components of Riemann curvature
 - Torsion 2-form $\mathring{\mathcal{T}}^a = \frac{1}{2} \mathring{\mathcal{T}}^a{}_{\mu\nu} dx^{\mu} \wedge dx^{\nu}$
- Cartan structure equations

$$0 = dh^{a} + \hat{\omega}^{a}{}_{b} \wedge h^{b}, \qquad (\text{zero torsion})$$
$$\hat{\mathcal{R}}^{a}{}_{b} = d\hat{\omega}^{a}{}_{b} + \hat{\omega}^{a}{}_{c} \wedge \hat{\omega}^{c}{}_{b} \qquad (\text{non-zero curvature})$$

define Riemannian geometry

General Relativity

(Einstein-)Hilbert action²

$$S_{\rm EH} = -\int_{\mathcal{M}} h \overset{\circ}{R} d^4 x = -\int_{\mathcal{M}} \overset{\circ}{\mathcal{R}}_{ab} \wedge \star (h^a \wedge h^b)$$

Introduce the "tangent" dual as (distinct from the Hodge one!)

$$\star \overset{\circ}{\mathcal{R}}_{ab} = \frac{1}{2} \epsilon_{abcd} \overset{\circ}{\mathcal{R}}_{cd}$$

Then GR equations written through forms as

 $\overset{\circ}{\mathcal{R}}{}^{a}{}_{b} \wedge h^{b} = 0$ (First Bianchi identity) $\overset{\circ}{\mathcal{R}}{}^{a}{}_{b} \wedge h^{b} = 0$ (Einstein field equations)

²In units $16\pi G/c^4 = 1$

Gravitational Self-Dual Instanton

- Eguchi-Hanson self-dual solution (1978)
- Solutions with (anti) self-dual curvature

$$\overset{\circ}{\mathcal{R}}_{ab} = \pm * \overset{\circ}{\mathcal{R}}_{ab}$$

Lead to (anti) self-dual connection

$$\overset{\circ}{\omega}_{ab} = \pm \star \overset{\circ}{\omega}_{ab}$$

- Automatically solve the Einstein field equations
- Eguchi-Hanson instanton

$$ds^{2} = f^{-1}dr^{2} + \frac{r^{2}}{4} \left[f \left(d\psi + \cos\theta d\phi \right)^{2} + d\theta^{2} + \sin^{2}\theta d\phi^{2} \right], \qquad f = 1 - \frac{2}{3}$$

Gravitational and YM Instantons

	YM Theory	General Relativity
Basic variables	A	ha
Field strength	F = DA	$\overset{\circ}{\mathcal{R}}{}^{a}{}_{b} = d\overset{\circ}{\omega}{}^{a}{}_{b} + \overset{\circ}{\omega}{}^{a}{}_{c} \wedge \overset{\circ}{\omega}{}^{c}{}_{b}$
Action	∫TrF∧∗F	$-\int \overset{\circ}{\mathcal{R}}_{ab} \wedge \star (h^a \wedge h^b)$
Bianchi identity	<i>DF</i> = 0	$\overset{\circ}{\mathcal{R}}{}^{a}{}_{b} \wedge h^{b} = 0$
Field equations	$D \star F = 0$	$* \overset{\circ}{\mathcal{R}}{}^{a}{}_{b} \wedge h^{b} = 0$
Self-dual field strength	$F = \pm \star F$	$\overset{\circ}{\mathcal{R}}_{ab} = \pm \star \overset{\circ}{\mathcal{R}}_{ab}$
Self-dual solution	$F = \pm \star F$	$\hat{\omega}^{a}{}_{b} = \pm \star \hat{\omega}^{a}{}_{b}$
Topological term(s)	$\int \mathrm{Tr} F \wedge F$	$\int \epsilon_{abcd} \overset{\circ}{\mathcal{R}}^{ab} \wedge \overset{\circ}{\mathcal{R}}^{cd}$
		$\int \overset{\circ}{\mathcal{R}}{}^{a}{}_{b} \wedge \overset{\circ}{\mathcal{R}}{}^{b}{}_{a}$
Topological charges	k	χ, P_1

There ARE some similarities, but also MANY DIFFERENCES!!!

Solution: Do Exactly Opposite (... aka Teleparallel Gravity)

Instead of Riemannian geometry

 $0 = dh^{a} + \mathring{\omega}^{a}{}_{b} \wedge h^{b}, \quad (\text{zero torsion})$ $\mathring{\mathcal{R}}^{a}{}_{b} = d\mathring{\omega}^{a}{}_{b} + \mathring{\omega}^{a}{}_{c} \wedge \mathring{\omega}^{c}{}_{b} \quad (\text{non-zero curvature})$

Consider the teleparallel geometry (exactly opposite)

$$0 = d\omega^{a}{}_{b} + \omega^{a}{}_{c} \wedge \omega^{c}{}_{b} \qquad (\text{zero curvature})$$
$$T^{a} = dh^{a} + \omega^{a}{}_{b} \wedge h^{b} \qquad (\text{non-zero torsion})$$

• Ricci theorem relates Riemmanian $\hat{\omega}^a{}_b$ and teleparallel $\omega^a{}_b$ connections

 $\omega^{a}{}_{b} = \overset{\circ}{\omega}{}^{a}{}_{b} + K^{a}{}_{b}$

where $T^a = K^a{}_b \wedge h^b$

Teleparallel Equivalent of General Relativity

• Using Ricci theorem $\omega^a{}_b = \overset{\circ}{\omega}{}^a{}_b + K^a{}_b$ we can rewrite the Einstein-Hilbert action as

$$S_{\rm EH} = S_{\rm TG} + \int \partial_{\mu} \left(\frac{h}{\kappa} T^{\nu\mu} v \right)$$

Teleparallel action

$$S_{TG} = \int h \left[\frac{1}{4} T^{a}_{\mu\nu} T^{\mu\nu}_{a} + \frac{1}{2} T^{a}_{\mu\nu} T^{\nu\mu}_{a} - T^{\mu} T_{\mu} \right] = \int_{\mathcal{M}} h T^{\mu}_{\mu\nu} T^{\mu}_{a} + \frac{1}{2} T^{\mu}_{\mu\nu} T^{\mu}_{\mu\nu} T^{\mu}_{a} + \frac{1}{2} T^{\mu}_{\mu\nu} T^{\mu}_{\mu} + \frac{1}{2} T^{\mu}_{\mu\nu} T^{\mu}_{\mu\nu} T^{\mu}_{\mu\nu} + \frac{1}{2} T^{\mu}_{\mu\nu} T^{\mu}_{\mu\nu} T^{\mu}_{\mu\nu} + \frac{1}{2} T^{\mu}_{\mu\nu} +$$

- yields teleparallel equivalent of general relativity, which is
 - dynamically equivalent theory (same solutions as GR: same Schwarzschild, Kerr, etc...) but differs from GR by boundary terms
 - my recent suggestions: it is a fully equivalent to the full GR action
 - MK: Bulk Action Growth for Holographic Complexity, 2308.04354, PRD
 - MK: Teleparallel Gravity, Covariance and their Geometrical Meaning, 2401.08106
 - MK: Einstein Gravity from Einstein Action: Counterterms and Covariance, 2406.08452

Teleparallel Gravity a la Yang-Mills

Many interesting aspects, but here crucial that the teleparallel action

$$S_{TG} = \int_{\mathcal{M}} hT = \int h \left[\frac{1}{4} T^{a}_{\mu\nu} T^{\mu\nu}_{a} + \frac{1}{2} T^{a}_{\mu\nu} T^{\nu\mu}_{a} - T^{\mu} T^{\mu}_{\mu} \right]$$

Can be written as

$$S_{\mathrm{TG}} = \int_{\mathcal{M}} T^a \wedge H_a$$

where we have introduced the excitation 2-form with components

$$H^{a}_{\rho\sigma} = h\epsilon_{\rho\sigma\alpha\beta} \left(\frac{1}{4} T^{a\alpha\beta} + \frac{1}{2} T^{\alpha a\beta} - h^{a\beta} T^{\alpha} \right)$$

Teleparallel Gravity a la Yang-Mills

Yang-Mills Theory

Action

$$S_{\rm YM} = \int_{\mathcal{M}} {\rm Tr}\, F \wedge \star F$$

Field Equations

DF = 0 $D \star F = 0$

Teleparallel Gravity

Action

$$S_{\mathsf{TG}} = \int_{\mathcal{M}} T^a \wedge H_a$$

Field Equations

 $DT^{a} = 0$ $DH^{a} + E^{a} = 0$

Self-Excited Solutions in Teleparallel Gravity

 Self-duality is not important for instanton construction ("only" for proving the BPS bound), important is that the action is a exterior product of two forms

$$S_{TG} = \int_{\mathcal{M}} T^a \wedge H_a \iff S_{YM} = \int_{\mathcal{M}} F^a \wedge *F_a$$

Premetric/axiomatic approach Itin, Hehl, Obukhov 2017

$$dF = 0$$
$$dH = 0$$

Maxwell electrodynamics is a special case H = *F

(Anti) Self-excited solutions

$$T^a = \pm H^a$$

Topological Self-Excited Action

• The action for (anti) self-excited solutions $T^a = \pm H^a$ is

$$\tilde{S}_{\mathsf{TG}} = \pm \int_{\mathcal{M}} T^a \wedge T_a$$

• Nieh-Yan identity (for R = 0)

$$d(h^a \wedge T^a) = dh^a \wedge T^a + h^a \wedge dT^a = T^a \wedge T_a$$

(Anti) self-excited action is then

$$\tilde{\mathcal{S}}_{\mathsf{TG}} = \pm \int_{\mathcal{M}} T^{a} \wedge T_{a} = \pm \int_{\mathcal{M}} d(h^{a} \wedge T^{a}) = \pm \oint_{\partial \mathcal{M}} h^{a} \wedge T^{a}$$

Axial Torsion as a Topological Current

Nieh-Yan topological charge

$$\tilde{\mathcal{S}}_{\mathsf{TG}} = \pm \oint_{\partial \mathcal{M}} h^{a} \wedge T^{a} = \pm \mathcal{N}$$

which is an integer and hence plays a role of the winding number In components

$$d(h^a \wedge T^a) = \frac{1}{2} \partial_\mu a^\mu d^4 x$$

Axial torsion plays the role of the Chern-Simons current

$$a^{\mu} = \epsilon^{\mu\nu\rho\sigma} T_{\nu\rho\sigma}$$

Gravitational and YM Instantons

Similarities are much closer now

	YM Theory	General Relativity	Teleparallel Gravity
Basic variables	A	hª	$h^a, \omega^a b$
Field strength	F = DA	$\overset{\circ}{\mathcal{R}}{}^{a}{}_{b} = d\overset{\circ}{\omega}{}^{a}{}_{b} + \overset{\circ}{\omega}{}^{a}{}_{c} \wedge \overset{\circ}{\omega}{}^{c}{}_{b}$	$T^a = Dh^a = dh^a + \omega^a{}_b \wedge h^b$
Action	$\int \mathrm{Tr} F \wedge \star F$	$-\int \overset{\circ}{\mathcal{R}}_{ab} \wedge \star (h^a \wedge h^b)$	$\int T^a \wedge H_a$
Bianchi identity	<i>DF</i> = 0	$\overset{\circ}{\mathcal{R}}{}^{a}{}_{b}\wedge h^{b}=0$	$DT^a = 0$
Field equations	$D \star F = 0$	$* \overset{\circ}{\mathcal{R}}{}^{a}{}_{b} \wedge h^{b} = 0$	$DH^a + E^a = 0$
Self-dual f. strength	$F = \pm \star F$	$\overset{\circ}{\mathcal{R}}_{ab} = \pm \overset{\circ}{\star} \overset{\circ}{\mathcal{R}}_{ab}$	$T^a = \pm H^a$
Self-dual solution	$F = \pm \star F$	$\overset{\circ}{\omega}{}^{a}{}_{b} = \pm \star \overset{\circ}{\omega}{}^{a}{}_{b}$	$T^a = \pm H^a$
Topological term(s)	$\int \mathrm{Tr} F \wedge F$	$\int \epsilon_{abcd} \overset{\circ}{\mathcal{R}}^{ab} \wedge \overset{\circ}{\mathcal{R}}^{cd}$	$\int T^a \wedge T_a$
	HT	$\int \overset{\circ}{\mathcal{R}}{}^{a}{}_{b} \wedge \overset{\circ}{\mathcal{R}}{}^{b}{}_{a}$	XX
Topological charges	k	χ, P_1	\mathcal{N}

Example

• Consider SU(2) Cartan-Maurer forms on S^3

 $\sigma_x = \frac{1}{2}(\sin\psi\,d\theta - \sin\theta\cos\psi\,d\phi), \qquad \sigma_y = \frac{1}{2}(-\cos\psi\,d\theta - \sin\theta\sin\psi\,d\phi), \qquad \sigma_z = \frac{1}{2}(d\psi + \cos\theta\,d\phi),$

Ansatz tetrad

$$h^{a} = (fdr, g \sigma_{x}, g \sigma_{y}, g \sigma_{z}),$$

• (Anti) self-excited solution $T^a = \pm H^a$ is then $f = \pm g'$

Leads to Nieh-Yan charge

$$\mathcal{N} = \oint h^a \wedge T_a = \oint 6g^2 \sigma_{\mathsf{X}} \wedge \sigma_{\mathsf{y}} \wedge \sigma_{\mathsf{z}} = 12\,\pi^2,$$

for all $g \to 1$ as $r \to \infty$

• (Eguchi-Hanson instanton is a solution as well but with $\mathcal{N} = 0$)

Self-Excited Instantons: Overview and Conclusions

- Teleparallel gravity allows us to write gravity action as $\int T^a \wedge H_a$
- Analogously to BPST we can consider self-excited solutions $T^a = \pm H^a$ for which the action reduces to a topological Nieh-Yan term

$$\tilde{\mathcal{S}}_{\mathsf{TG}} = \pm \int_{\mathcal{M}} T^{a} \wedge T_{a} = \pm \oint_{\partial \mathcal{M}} h^{a} \wedge T^{a} = \pm \mathcal{N}$$

 Axial torsion a^µ and Nieh-Yan charge N play the roles of Chern-Simons current and winding number in YM theory

- ▶ We have 2 out of 3 "nice properties" of BPST instantons
 - Automatic solutions (same as in YM and GR) $DT^a = DH^a = 0$ (with $E^a = 0$)
 - Relates the action to a topological term (same as in the BPST case)
 - But **no BPS bound** since $H_{\rho\mu\nu}H^{\rho\mu\nu} \neq T_{\rho\mu\nu}T^{\rho\mu\nu}$ (compatible with indefiniteness of the gravitational action Gibbons, Hawking, Perry 1978)

Self-Excited Instantons: Applications and Conclusions

- Teleparallel geometry seems to be better-suited for understanding instanton structure of gravity than Riemannian geometry
- Allows us to explore topological structure of the gravitational action
- Hints of non-trivial vacuum structure of gravity
- Better understanding of the bound on gravitational action
- Possibly gives us another try for Euclidean quantum gravity
- ► Nieh-Yan "axion-like" modifications of gravity Mielke, Li, ...

This work was supported by Marie Skłodowska-Curie COFUND Action program SASPRO2 grant no. 3215/02/01 AGE of Gravity (Alternative Geometries of Gravity).

