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Motivation

1) [Additional angular velocity can ] = [Rotating compact stars can support a larger mass ]

counteract the extra gravitational force

than their non-rotating counterparts.

® For slowly and uniformly rotating equilibrium solutions in a Hartle—
Thorne approximation (quartic order in the angular velocity).

® For rapidly and uniformly rotating stars, we solve the coupled }
system of non-linear elliptic PDEs that are associated with the
Einstein field equations (by implementing multi-domain spectral
methods in the LORENE/rotstar codes).

2) [ “Burst” emission ] [ Continuous emission ]

7 LN 720"

Binary neutron star mergers Magnetar flares Pulsar glitches Non-axisymmetric mass Fluid part (oscillations)
(our safest bet for detection) (likely too weak) (likely too weak) quadrupole (“mountains™)

(To study the observable parameters\
of rotating relativistic compact stellar
models based on the angular velocity

\_and on the equations of state. )

4 - )
Oscillation modes are unstableto

gravitational wave emission
— r-mode or f-mode oscillations

- J




Stellar structure model In hydrostatic equilibrium

(e

nergy—momentum tensor (perfect fluid):
Tuv = (,0 + p)uuuv + bYuv
The energy density and the pressure of the fluid are We are searching for three equations, which come from some
related by an equation of state: — combination of equation of local conservation of energy and
p=p(p) (T=0) MEESCIURURIEN momentum (V,T#¥ = 0) and the Einstein equations (G, = 87T,,):

Metric tensor: ds? = —eVdt? + e*dr? + r2(d6? + sin? 6 dp?)
where m(r) = r(1 — e*)/2 is the ,gravitational mass” inside radius r

- state of matter

(Gravitational mass: G f? D Relativistic
dr «~ corrections

Gravitational potential: dv _ 2m+8nr7p |

dr r(r-2m)
3
Macroscopic observables: Hydrostatic equilibrium: Z_f _ _ (p+rpz)((1n:;7;:) p)
Microphysics: EOS Mass—radius relations \(TO|man—0ppenheimer—Vo|koff ]

@the stellar center (r = 0):
maees | | e M(0) = 0: the mass function vanish

® po = p(0): central density is freely specified
C upas At the stellar surface (r = R): Boundary
— uisi ®* M =m(R): total mass of the star conditions
— Slyd ® »(R) = 0: the isotropic pressure vanishes
| | e ev® =1 _2M/R: normalizing the time coordinate at

TR \spatial infinity

Baryon-numbes density (fim M R (kttl]
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Hartle—Thorne slow-rotation approach

Exact solution of Einstein’s equations describing spacetime in the vicinity of a perfect fluid,
stationary and axially symmetric and slowly rotating star:

Hartle (1967), Hartle—Thorne (1968), Chandrasekhar—Miller (1974), Miller (1977):

« Slow-rotationapproximation: Q? <« GM/R3 = Q2
(or mass-to-radius ratio GM/c? /Rz0.1)

» Terms up to 2nd order in Q are taken into account
ds?

= e?Vo[1 + Zh%(r) + 2h, (r)P,(cos 6)]dt?
+ e [2mqy (1) + 2m, (r)Py(cos8)]; dr?
+72[1 + 2k, (r)Pz(cos N{do?% + [dp — w(r)dt]?sin? 6}
* w(r)-1storderin
* ho(r), hy,(r), my(r), my(r), k,(r)—2ndorderin Q, functionsof r

Kepler

2nd-order Legendre polynomial:
P,(cos8) = (3cos? 8 —1)/2

Parameters that fully describing the star within HT approx.
Within the slow rotation approximation only gquantities up to 2nd
order in Q are taken into account:
= | —specific angular momentum
= M — total gravitational mass
» (@ —dimensionless quadrupole moment




(1. Computation of angular momentum\ (2 Computation of mass h
From (t¢) component of Einstein Calculation of the spherical perturbation (1 =0) quantities
equation dmy 1 da\* 1 . dj?
14 (i) 29 4 4 Y mo(r): —— = 4nr(p +p) —6po + 5 T (m) - 3@
r3dr dr dr
&) =0-w) j=e Gotvo) dpo _ _mo(1+8mr” P) G Dl
. . dr (r — 2m)? r—2m
» Equation is solved with proper po (1) : 4o 2 32 ~3
boundary condition WA 5 (dw> 14 (T jiw )
12r — 2m\dr 3dr\r —2m
* We want to calculate models for a
given ( — rescaling » Total gravitational mass of the rotating star:
pe 1R4<d6> L M(R) = My(R) + my(R) +J/R3
K 6 dr R Q j \_ )
[3. Computation of quadrupole moment: Calculation of the deviation from spherical symmetry A
i o 't. 7
dv? 2dv, 1 dvg\|1 d® 1 dj2 :
- = —_4+ 2 1l= B
dr dr h2+<r+ dr>[6r1 <dr> 37 Y ’
dh 20?2 dv r ' A4m(r) ]
d—z gt —2d0+ I 8r(p +p) — ) h; ‘
r r(r — Zm(r)) =20 r r(r — Zm(r)) kU | y
1[ dv 1 d&@ 1[ dv 1 dj? " ~
ol ar v r3j2<d_w> 3t v ’"Zz‘v)di
4 2(r — Zm(r)) =0 r 4 2(r — 2m(r)) 0 4
Q= gKM3 + ]ﬁwhere K comes from matching of internal and external solutions
\_ J




Stationary and axisymmetric approach

We suppose that there exists two Killing vector fields:

-

o & (timelike) to account for stationarity;
« X (spacelike) with closed orbits for axisymmetry

Quasi-isotropic coordinates

The coordinates (t,r,8,¢) with an only (r,0)-
dependent line element are called quasi-

Isotropic coordinates.

Under such conditions, it is possible to choose adapted coordinates, such that the metric depends
only on two coordinates (r,8) and takes the following form:

ds? = —N?dt? +@ (dr? + r?d6?) +?Zr2 sin? 6(dg —@dt) *

E_? = B(r,0) is defined by B? = M]

r2sin26

(A = A(r,0) is defined by g dx%dxP= A2(dr? + h
r2d6?)
All metrics are conformally related in 2 dimensions.
\_They differ from each other only by a scalar factor A?, )

(a) = w(r,0) is defined as the normalized\
scalar product of the two Killing vectors:
Ez' X It = ? X
w=9g-—= = o T Gt = —wg
IX.X Jop =X X te PP

k The minus sign ensures that for a rotating star, ©>0 j




Schwarzschild-type metric potentials

1.0

0.8

0.6

The metric of an arbitrary static spherically symmetric spacetime can be expressed by spherical polar

coordinates (¢, 7, 0, ®) as

ds*

or equivalently, by isotropic polar coordinates (t, r, 6, @) as

ds”

D. Barta (2024), arXiv:2406.07319
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—e2dE’ + e2AdF? + 7 (sin2 Hdcﬁz +df )

—e2Vdt* +(e?K[dr? + r2(sin? de? + d6?)]

R and R denote the surface radius in curvature

1 and isotropic coordinates, respectively.
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Field equations in QI coordinates

In this gauge, the Einstein’s field equations for rigidly rotating stars at the frequency Q turn into a
system of four coupled non-linear elliptic partial differential equations:

NON-LIN. ELLIPTIC PDES DIFFERENTIAL OPERATORS

B%r?sin’ 0 2 1 8 107
A3v = 4mA*(E+3 E+p)U? —8&}2 dva(v — _
~ . NA? _ 92 20 197 1 0
Az (@rsinf) = —lﬁﬁT(Eer)U—r311198£08(3;5’ —V) )= ottt S t F e 70
A2 [(NB—1)rsin8] = 16TNA*Bprsin6 As = 53_2_;29

3B%r2sin” O J a: S'm] da ol
A (V+oa) = 8mA% [p+ (E+p)UH + dw)* —(dv)? ._ cadb 1 oaodb

(v+a) -+ E+ 0+ =00 = 0v2 | laap= 2020 Lo,

Laplacianina2-
dimensional flat space

Laplacianina 3-
dimensional flat space

with the following notations: v:i=InN,a:= InA4, [ = InB
* total energy density: E=UI(e+p)—0p non-rotating observer

=+1—U? - Lorentz factor




Using log-enthalpy

A perfectfluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

1 T

Conservation laws

T* = (¢ + p)utu’ + pg"” e =¢e(np) E> Energy—momentum conservation: V,T** = 0
where u* is the fluid 4-velocity, p its | | P = P(1p) Baryon-number conservation: V,(nyu*) =0
pressure and ¢ its total energy density.

Stress—energy tensor (perfect fluid):

« The only non-trivial hydrostationary equation is the relativistic Euler’s equation of motion (which
can be obtained from the spatial sector of the local energy—momentum conservation equation):

(e + PutVu, + (6% + u“ua)Vﬂp =0

* Inthe stationary, axisymmetric and circular case, Euler’s equation turns into a simple first integral:

H+Hv)- InI" = const. (along a fluid line)

with the log-enthalpy N \As before, notations for the metric function and
&
H = ln( p) the Lorentz factor: ' = V1 —U?%,v =InN

Ny C2




New equation of state (SFHo0)

Axial-vector meson-extended quark—meson model describes the quark matter in the NS core.

A perfect fluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

1 T

Conservation laws

Stress—energy tensor (perfect fluid):
T* = (¢ + p)utu’ + pg"” e =¢e(np) E> Energy-momentum conservation: V,T%* = 0

where ut is the fluid 4-velocity, p its | |P = p(1p) Baryon-number conservation: V,(nput) =0

pressure and ¢ its total energy density.

700 £
Property SFHo | DD2 600 j
Saturation density, ng [fm "] 0.16 0.15 sool S
Binding energy per baryon, Eg [MeV] -16.17 | -16.02 TR
CDHIPI'ESSibi]it}', Ko [I\-IER’I] 245.2 242.7 ﬂ 400 F 1000 1200 1400 1600 1500 2000 yd
Symmetry energy, So [MeV] 31.2 32.73 E : o e x
Slope of symmetry energy, L [MeV] 45.7 57.94 =3 3005_
Maximum mass neutron star [M ] 2.06 2.42 =200t
Radius of M = 1.4 M, neutron star [km]| 11.97 | 13.26 100;_ s P—
} } ) r g(n), @ = 3.5my, I' = Lin,
Table. Nuclear properties of symmetric nuclear matter described by L p(), ns, = 1.5ng, ny = Tng
the SFHo and DD2 RMF models as well as some properties of 00_"‘ ___;(;[}_______I[:O;)_______l;{l_ﬂ _______ ; E&[;n_
neutron stars described by these models. e [MeV /fm?]

P. Kovécs, J. Takatsy, J. Schaffner-Bielich, and Gy. Wolf. Phys. Rev. D 105 (2022), 103014, arXiv:2111.06127



LORENE (Langage Objet pour la RElativite NumeriquE) is a set of C++ classes to solve various
problems arising in numerical relativity, and more generally in computational astrophysics.

The computational domain of LORENE/rotstar is composed of three regions

1.  The first region, the so-called nucleus, is a spheroidal domain,
3rd region for which the surface is adapted to the stellar surface.

external compactified
domain

2nd region
intermediate shell 2. The second region is a shell region surrounding the nucleus.
The inner boundary of this shell is the same as the outer
boundary of the nucleus, while the outer boundary of the shell

Is a sphere with twice the radius of the nucleus at the equator.

o
a (1<)

-l<E<]

3. The third region is a compactified external domain that
extends from the outer boundary of the shell to spatial infinity.
The compactified external domain allows us to impose exact
boundary conditions at spatial infinity.

Solving the elliptic equations

» The elliptic equations are solved in each computational domain, and matching conditions are imposed so
that values of the metric functions and their derivatives agree on both sides of each domain.

» In LORENE, functions of rand 6 are expanded in Chebyshev polynomials and trigonometric functions,
respectively, and the latter are re-expanded in Legendre polynomials when it is advantageous.




Limits on the stability of rotating relativistic stars

Secularaxisymmetric instability:

oM(p ,J : :
(%) = 0 : Turning-point method to
¢ J
locate the points where secular instability sets in
for uniformly rotating relativistic stars.

M/M,,

Mass-shedding instability:

For the Hartle—Thorne external solution, the Keplerian (or
mass-shedding) angular frequency can be written as:

GM

Qg = W [1=jF1(Req) +J?F,(Req) + qF;(Req)]
eq

Req (km)

25h | where j = J/M? and g = Q/M?3 are the dimensionless
' | angular momentum and quadrupole moment.
2.07 I r )
I Frequency
L — (0 Hz
1.5 . .
f 300 Hz The solid lines represent sequences
600 T computed by LORENE, and dashed lines
1.0 represent those of our slow-rotating HT
' 0 Hz model on different frequencies.
L = 1200 Hz
0.5
| = 1300 Hz
0.07\ | L 1 L | L 1 L | 1 L L .I 1 L L | L




Boundary limits on observables: Gravitational mass & equatorial radius

Mgray/M
grav/ Vg
25 <

20+
151
i —— OHz
- 900 Hz

0_5: — 1200 Hz
I —— mass-shedding limit

—— axisym. instability

0.0

0.0005 0.0010 0.0015 0.0020

Keplerian sequences
\F‘i
a8

17h

15

16

1l

D. Barta. Class
Quantum Grav.
38(18):185002-
185036, 2021. =

Critical points -«

'I
_2 I
1 I
0 \

stable mofles

B unstable fnodes

0.0010 0.0015 0.0020

» For rotating stars, the turning point is a sufficient but not a necessary condition for instability:
The onset of instability is at a configuration with slightly lower ¢, (for fixed angular momentum)

than that of the star with M.




Deviation of the gravitational mass
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the gravitational mass computed by a
fast rotational approach is always greater

\.and increases rapidly with Q. )
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/> The ,,mass-shedding” or
Keplerian limit imposes
a lower limit on the ¢,
ateach Q.

» The onset of the secular
instability imposes a
upper limit on the ¢, at

\each Q.




Deviation of the equatorial radius
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Deviation of the angular momentum
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Relative error

Comparison of the relative errors of observable parameters at M.,

Kacskovics, Barta, Vasuth. Astron. Nachr., 334:220121 (2023)

("> As approaching Q, the difference in the computed M., grows atan )
Increasing rate

» At the mass-shedding limit, the difference between the two methods is
. 5.02%, and maximum masses are 2.34M and 2.49M, respectively. /

Keplerian sequence .

() E— o f \
| — AM/M | » The rate of increase is greater for
ool AR/R slow rotation than for fast rotation.
— 0.1xA
P A i > At the mass-shedding limit, the difference
0.0l = L between the two methods is 0.5%
0.00 = _é f _ _ \
& > Linear growth for slow rotation, more
| rapid growth for fast rotation
-0.02
' > At the mass-shedding limit, the difference
ooal between the two methods is 0.38%

[ S S f i
0 200 400 600 800 1000 1200 1400 k
f (Hz)




Current and future research

Inclusion of new EQOS tablesinto CompOSE

Add new representative EOS tables into CompOSE

— LORENE/rotstar loads tabulated EOS models in

CompOSE format.

« CompOSE: online repository of EOS for use in
nuclear physics and astrophysics

Study of GW-radiating oscillation modes

The background quantities for fast-rotating stationary
configurations will be computed by
LORENE/rotstar. We assume small deviations for the
fluid variables and study their linearized perturbations.

Exploration of the region of stable
configurations for compact stars with various
nucleonic and hybrid EOS in their cores.

Neutron star oscillations as sources of
E> gravitational waves: f- and r-mode oscillations

Thank you very much for your attention!
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