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To study the observable parameters
of rotating relativistic compact stellar
models based on the angular velocity
and on the equations of state.

• For slowly and uniformly rotating equilibrium solutions in a Hartle–
Thorne approximation (quartic order in the angular velocity).

• For rapidly and uniformly rotating stars, we solve the coupled
system of non-linear elliptic PDEs that are associated with the
Einstein field equations (by implementing multi-domain spectral
methods in the LORENE/rotstar codes).

Additional angular velocity can 
counteract the extra gravitational force

Rotating compact stars can support a larger mass 
than their non-rotating counterparts.1)

2)

Motivation

Oscillation  modes are unstable to 
gravitational wave emission
→ r-mode or f-mode oscillations



Stellar structure model in hydrostatic equilibrium

At the stellar center (𝑟𝑟 = 0): 
• 𝑀𝑀 0 = 0: the mass function vanish
• 𝜌𝜌0 ≡ 𝜌𝜌 0 : central density is freely specified
At the stellar surface (𝑟𝑟 = 𝑅𝑅):
• 𝑀𝑀 ≡ 𝑚𝑚 𝑅𝑅 : total mass of the star
• 𝑝𝑝 𝑅𝑅 = 0: the isotropic pressure vanishes
• 𝑒𝑒𝜈𝜈 𝑅𝑅 = 1− 2𝑀𝑀/𝑅𝑅: normalizing the time coordinate at 

spatial infinity

Gravitational mass: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝑟𝑟2𝜌𝜌

Gravitational potential: 𝑑𝑑𝜈𝜈
𝑑𝑑𝑑𝑑

= 2𝑑𝑑+8𝜋𝜋𝑑𝑑3𝑝𝑝
𝑑𝑑(𝑑𝑑−2𝑑𝑑)

Hydrostatic equilibrium: 𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= − (𝜌𝜌+𝑝𝑝)(𝑑𝑑+4𝜋𝜋𝑑𝑑3𝑝𝑝)
𝑑𝑑2(1−2𝑀𝑀/𝑑𝑑)

(Tolman–Oppenheimer–Volkoff equation)

Relativistic 
corrections

Structure

Boundary 
conditions

Macroscopic observables: 
Mass–radius relationsMicrophysics: EOS

Metric tensor: 𝑑𝑑𝑑𝑑2 = −𝑒𝑒𝜈𝜈𝑑𝑑𝑡𝑡2 + 𝑒𝑒𝜆𝜆𝑑𝑑𝑟𝑟2 + 𝑟𝑟2 𝑑𝑑𝜃𝜃2 + sin2 𝜃𝜃 𝑑𝑑𝜑𝜑2
where 𝑚𝑚 𝑟𝑟 ≡ 𝑟𝑟(1− 𝑒𝑒−𝜆𝜆)/2 is the „gravitational mass” inside radius 𝑟𝑟

Energy–momentum tensor (perfect fluid):
𝑇𝑇𝜇𝜇𝜈𝜈 = 𝜌𝜌 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 + 𝑝𝑝𝑔𝑔𝜇𝜇𝜈𝜈

The energy density and the pressure of the fluid are 
related by an equation of state:

𝑝𝑝 = 𝑝𝑝 𝜌𝜌 𝑇𝑇 = 0 Description of the
state of matter 

We are searching for three equations, which come from some
combination of equation of local conservation of energy and
momentum (𝛻𝛻𝜇𝜇𝑇𝑇𝜇𝜇𝜈𝜈 = 0) and the Einstein equations (𝐺𝐺𝜇𝜇𝜈𝜈 = 8𝜋𝜋𝑇𝑇𝜇𝜇𝜈𝜈):



egendre polynomial of order 2;

Exact solution of Einstein’s equations describing spacetime in the vicinity of a perfect fluid, 
stationary and axially symmetric and slowly rotating star:

Hartle (1967), Hartle–Thorne (1968), Chandrasekhar–Miller (1974), Miller (1977):
• Slow-rotation approximation: Ω2 ≪ 𝐺𝐺𝑀𝑀/𝑅𝑅3 = ΩKepler

2

(or mass-to-radius ratio 𝐺𝐺𝑀𝑀/𝑐𝑐2/𝑅𝑅≿0.1 )
• Terms up to 2nd order in Ω are taken into account

𝑑𝑑𝑑𝑑2
= 𝑒𝑒2𝜈𝜈0 1 + 2ℎ0 𝑟𝑟 + 2ℎ2 𝑟𝑟 𝑃𝑃2 cos𝜃𝜃 𝑑𝑑𝑡𝑡2

+ 𝑒𝑒2𝜆𝜆0 1 +
𝑒𝑒2𝜆𝜆0
𝑟𝑟 2𝑚𝑚0 𝑟𝑟 + 2𝑚𝑚2 𝑟𝑟 𝑃𝑃2 cos𝜃𝜃 𝑑𝑑𝑟𝑟2

+ 𝑟𝑟2[1 + 2𝑘𝑘2 𝑟𝑟 𝑃𝑃2(cos𝜃𝜃)] 𝑑𝑑𝜃𝜃2 + 𝑑𝑑𝑑𝑑 − 𝜔𝜔 𝑟𝑟 𝑑𝑑𝑡𝑡 2 sin2 𝜃𝜃

• 𝜔𝜔 𝑟𝑟 – 1st order in Ω
• ℎ0 𝑟𝑟 , ℎ2 𝑟𝑟 , 𝑚𝑚0 𝑟𝑟 , 𝑚𝑚2(𝑟𝑟), 𝑘𝑘2 𝑟𝑟 – 2nd order in Ω, functions of 𝑟𝑟

Hartle–Thorne slow-rotation approach

Within the slow rotation approximation only quantities up to 2nd 
order in Ω are taken into account:
 𝐽𝐽 – specific angular momentum
 𝑀𝑀 – total gravitational mass
 𝒬𝒬 – dimensionless quadrupole moment

Parameters that fully describing the star within HT approx.

2nd-order Legendre polynomial:
𝑃𝑃2 cos 𝜃𝜃 = (3 cos2 𝜃𝜃 − 1)/2



1. Computation of angular momentum 
From (𝑡𝑡𝜑𝜑) component of Einstein 
equation 

1
𝑟𝑟3

𝑑𝑑
𝑑𝑑𝑟𝑟 𝑟𝑟4𝑗𝑗 𝑟𝑟

𝑑𝑑 �𝜔𝜔
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𝑑𝑑𝑗𝑗
𝑑𝑑𝑟𝑟 �𝜔𝜔 = 0

�𝜔𝜔 𝑟𝑟 = Ω −𝜔𝜔 𝑟𝑟 𝑗𝑗 = 𝑒𝑒− 𝜆𝜆0+𝜈𝜈0

• Equation is solved with proper 
boundary condition

• We want to calculate models for a 
given Ω – rescaling

𝐽𝐽 =
1
6 𝑅𝑅

4 𝑑𝑑 �𝜔𝜔
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, 𝐼𝐼 =
𝐽𝐽
Ω

2. Computation of mass
Calculation of the spherical perturbation 𝑙𝑙 = 0 quantities:

𝑚𝑚0 𝑟𝑟 :
𝑑𝑑𝑚𝑚0
𝑑𝑑𝑟𝑟 = 4𝜋𝜋𝑟𝑟2 𝜌𝜌+ 𝑝𝑝
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1
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𝑟𝑟3𝑗𝑗2 �𝜔𝜔2

𝑟𝑟 − 2𝑚𝑚
• Total gravitational mass of the rotating star:
𝑀𝑀 𝑅𝑅 = 𝑀𝑀0 𝑅𝑅 +𝑚𝑚0 𝑅𝑅 + 𝐽𝐽/𝑅𝑅3

3. Computation of quadrupole moment: Calculation of the deviation from spherical symmetry

𝑑𝑑𝑣𝑣2
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1
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𝑀𝑀 where 𝐾𝐾 comes from matching of internal and external solutions



Stationary and axisymmetric approach

We suppose that there exists two Killing vector fields:
• 𝝃𝝃 (timelike) to account for stationarity;
• 𝝌𝝌 (spacelike) with closed orbits for axisymmetry

Symmetries

Under such conditions, it is possible to choose adapted coordinates, such that the metric depends
only on two coordinates (𝑟𝑟,𝜃𝜃) and takes the following form:

𝑑𝑑𝑑𝑑2 = −𝑁𝑁2𝑑𝑑𝑡𝑡2 + 𝐴𝐴2 𝑑𝑑𝑟𝑟2 + 𝑟𝑟2𝑑𝑑𝜃𝜃2 +𝐵𝐵2𝑟𝑟2 sin2 𝜃𝜃 𝑑𝑑𝜑𝜑 − 𝜔𝜔𝑑𝑑𝑡𝑡 2

The coordinates (𝑡𝑡,𝑟𝑟,𝜃𝜃,𝜑𝜑) with an only (𝑟𝑟,𝜃𝜃)-
dependent line element are called quasi-
isotropic coordinates.

Quasi-isotropic coordinates

𝐴𝐴 = 𝐴𝐴 𝑟𝑟, 𝜃𝜃 is defined by 𝑔𝑔𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎= 𝐴𝐴2(𝑑𝑑𝑟𝑟2 +
𝑟𝑟2𝑑𝑑𝜃𝜃2)
All metrics are conformally related in 2 dimensions. 
They differ from each other only by a scalar factor 𝐴𝐴2.

𝐵𝐵 = 𝐵𝐵 𝑟𝑟, 𝜃𝜃 is defined by 𝐵𝐵2 = 𝑔𝑔𝜑𝜑𝜑𝜑
𝑑𝑑2sin2𝜃𝜃

𝜔𝜔 = 𝜔𝜔 𝑟𝑟,𝜃𝜃 is defined as the normalized
scalar product of the two Killing vectors:

𝜔𝜔 ≡ −
𝝃𝝃 � 𝝌𝝌
𝝌𝝌 � 𝝌𝝌

⟹
𝑔𝑔𝑡𝑡𝑡𝑡 = 𝝃𝝃 � 𝝌𝝌
𝑔𝑔𝑡𝑡𝑡𝑡 = 𝝌𝝌 � 𝝌𝝌

⟹ 𝑔𝑔𝑡𝑡𝑡𝑡 = −𝜔𝜔𝑔𝑔𝑡𝑡𝑡𝑡

The minus sign ensures that for a rotating star, 𝜔𝜔≥0



𝑅𝑅 and �𝑅𝑅 denote the surface radius in curvature
and isotropic coordinates, respectively.

The metric of an arbitrary static spherically symmetric spacetime can be expressed by spherical polar 
coordinates (�𝑡𝑡, �𝑟𝑟, �𝜃𝜃, �𝜑𝜑) as

𝑑𝑑𝑑𝑑2 = −𝑒𝑒2�𝜈𝜈𝑑𝑑�𝑡𝑡2 + 𝑒𝑒2�𝜆𝜆𝑑𝑑�𝑟𝑟2 + �𝑟𝑟2 (sin2 �𝜃𝜃𝑑𝑑�𝜑𝜑2 + 𝑑𝑑�𝜃𝜃2)

or equivalently, by isotropic polar coordinates (𝑡𝑡, 𝑟𝑟, 𝜃𝜃,𝜑𝜑) as

𝑑𝑑𝑑𝑑2 = −𝑒𝑒2𝜈𝜈𝑑𝑑𝑡𝑡2 + 𝑒𝑒2𝜇𝜇[𝑑𝑑𝑟𝑟2 + 𝑟𝑟2(sin2 𝜃𝜃𝑑𝑑𝜑𝜑2 + 𝑑𝑑𝜃𝜃2)]

𝑁𝑁 𝑟𝑟 𝐴𝐴 𝑟𝑟 = 𝐵𝐵(𝑟𝑟)D. Barta (2024), arXiv:2406.07319



In this gauge, the Einstein’s field equations for rigidly rotating stars at the frequency Ω turn into a
system of four coupled non-linear elliptic partial differential equations:

NON-LIN. ELLIPTIC PDES DIFFERENTIAL OPERATORS

with the following notations: 𝜈𝜈 ≔ ln𝑁𝑁, 𝛼𝛼 ≔ ln𝐴𝐴, 𝛽𝛽 ≔ ln𝐵𝐵
• fluid 3-velocity in the 𝜑𝜑-direction: 𝑈𝑈 = 𝐵𝐵𝑟𝑟 sin𝜃𝜃(Ω− 𝜔𝜔) /𝑁𝑁
• total energy density: 𝐸𝐸 = 𝛤𝛤 𝜀𝜀 + 𝑝𝑝 − 𝑝𝑝

Both measured by a locally 
non-rotating observer

𝛤𝛤 = 1−𝑈𝑈2 – Lorentz factor

Laplacian in a 3-
dimensional flat space

Laplacian in a 2-
dimensional flat space

Field equations in QI coordinates



A perfect fluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

Using log-enthalpy

𝑇𝑇𝜇𝜇𝜈𝜈 = 𝜀𝜀 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 + 𝑝𝑝𝑔𝑔𝜇𝜇𝜈𝜈

where 𝑢𝑢𝜇𝜇 is the fluid 4-velocity, 𝑝𝑝 its
pressure and 𝜀𝜀 its total energy density.

Stress–energy tensor (perfect fluid):
𝜀𝜀 = 𝜀𝜀 𝑛𝑛b
𝑝𝑝 = 𝑝𝑝(𝑛𝑛b)

EOS (𝑇𝑇=0):
Energy–momentum conservation: 𝛻𝛻𝜇𝜇𝑇𝑇𝛼𝛼𝜇𝜇 = 0
Baryon-number conservation:  𝛻𝛻𝜇𝜇(𝑛𝑛b𝑢𝑢𝜇𝜇) = 0

Conservation laws

• The only non-trivial hydrostationary equation is the relativistic Euler’s equation of motion (which 
can be obtained from the spatial sector of the local energy–momentum conservation equation):

𝜀𝜀 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝛻𝛻𝜇𝜇𝑢𝑢𝛼𝛼 + 𝛿𝛿𝛼𝛼
𝜇𝜇 + 𝑢𝑢𝜇𝜇𝑢𝑢𝛼𝛼 𝛻𝛻𝜇𝜇𝑝𝑝 = 0

• In the stationary, axisymmetric and circular case, Euler’s equation turns into a simple first integral:
𝐻𝐻 + 𝜈𝜈 − ln𝛤𝛤 = const. (along a fluid line)

with the log-enthalpy

𝐻𝐻 = ln
𝜀𝜀 + 𝑝𝑝
𝑛𝑛b𝑐𝑐2

As before, notations for the metric function and 
the Lorentz factor: 𝛤𝛤 = 1 − 𝑈𝑈2,𝜈𝜈 = ln𝑁𝑁



A perfect fluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

𝑇𝑇𝜇𝜇𝜈𝜈 = 𝜀𝜀 + 𝑝𝑝 𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 + 𝑝𝑝𝑔𝑔𝜇𝜇𝜈𝜈

where 𝑢𝑢𝜇𝜇 is the fluid 4-velocity, 𝑝𝑝 its
pressure and 𝜀𝜀 its total energy density.

Stress–energy tensor (perfect fluid):
𝜀𝜀 = 𝜀𝜀 𝑛𝑛b
𝑝𝑝 = 𝑝𝑝(𝑛𝑛b)

EOS (𝑇𝑇=0):
Energy–momentum conservation: 𝛻𝛻𝜇𝜇𝑇𝑇𝛼𝛼𝜇𝜇 = 0
Baryon-number conservation:  𝛻𝛻𝜇𝜇(𝑛𝑛b𝑢𝑢𝜇𝜇) = 0

Conservation laws

P. Kovács, J. Takátsy, J. Schaffner-Bielich, and Gy. Wolf. Phys. Rev. D 105 (2022), 103014, arXiv:2111.06127

Table. Nuclear properties of symmetric nuclear matter described by
the SFHo and DD2 RMF models as well as some properties of
neutron stars described by these models.

Axial-vector meson-extended quark–meson model describes the quark matter in the NS core.
New equation of state (SFHo)



LORENE (Langage Objet pour la RElativité NumériquE) is a set of C++ classes to solve various
problems arising in numerical relativity, and more generally in computational astrophysics.

1. The first region, the so-called nucleus, is a spheroidal domain,
for which the surface is adapted to the stellar surface.

2. The second region is a shell region surrounding the nucleus.
The inner boundary of this shell is the same as the outer
boundary of the nucleus, while the outer boundary of the shell
is a sphere with twice the radius of the nucleus at the equator.

3. The third region is a compactified external domain that
extends from the outer boundary of the shell to spatial infinity.
The compactified external domain allows us to impose exact
boundary conditions at spatial infinity.

The computational domain of LORENE/rotstar is composed of three regions

 The elliptic equations are solved in each computational domain, and matching conditions are imposed so
that values of the metric functions and their derivatives agree on both sides of each domain.

 In LORENE, functions of 𝑟𝑟 and 𝜃𝜃 are expanded in Chebyshev polynomials and trigonometric functions,
respectively, and the latter are re-expanded in Legendre polynomials when it is advantageous.

Solving the elliptic equations

1st region

2nd region
3rd region



Limits on the stability of rotating relativistic stars

∂M(ρc, J)
∂ρc 𝐽𝐽

= 0 : Turning-point method to

locate the points where secular instability sets in
for uniformly rotating relativistic stars.

Secular axisymmetric instability:
For the Hartle–Thorne external solution, the Keplerian (or
mass-shedding) angular frequency can be written as:

ΩK =
𝐺𝐺𝑀𝑀
Req

3 1− 𝑗𝑗F1 Req + 𝑗𝑗2F2 Req + 𝑞𝑞F3(Req)

where 𝑗𝑗 = 𝐽𝐽/𝑀𝑀2 and 𝑞𝑞 = 𝑄𝑄/𝑀𝑀3 are the dimensionless
angular momentum and quadrupole moment.

Mass-shedding instability:

The solid lines represent sequences
computed by LORENE, and dashed lines
represent those of our slow-rotating HT
model on different frequencies.



Static configurations

Keplerian sequences

Boundary limits on observables: Gravitational mass & equatorial radius

D. Barta. Class. 
Quantum Grav. 
38(18):185002–
185036, 2021.

 For rotating stars, the turning point is a sufficient but not a necessary condition for instability: 
The onset of instability is at a configuration with slightly lower εc (for fixed angular momentum) 
than that of the star with Mmax.

Critical points



Deviation of the gravitational mass

For any given value of εc,
the gravitational mass computed by a
fast rotational approach is always greater
and increases rapidly with Ω.

 The „mass-shedding” or
Keplerian limit imposes
a lower limit on the εc
at each Ω.

 The onset of the secular
instability imposes a
upper limit on the εc at
each Ω.

The deviation increases with
increasing Ω and decreases
with increasing εc.



Deviation of the equatorial radius

For any given value of εc, the radius
calculated by a fast rotational
approach is always larger and
increases rapidly with Ω.

The deviation increases with
increasing Ω and decreases
with increasing εc.

Similar trend as for mass M, 
but the deviation is smaller



Deviation of the angular momentum

For any given value of εc, J
calculated by a fast rotational
approach is always larger and
increases rapidly with Ω.

The deviation increases with
increasing Ω and decreases
with increasing εc.



Comparison of the relative errors of observable parameters at Mmax

 As approaching ΩK, the difference in the computed Mmax grows at an 
increasing rate

 At the mass-shedding limit, the difference between the two methods is
5.02%, and maximum masses are 2.34M⊙ and 2.49M⊙, respectively.

 Linear growth for slow rotation, more 
rapid growth for fast rotation

 At the mass-shedding limit, the difference
between the two methods is 0.38%

 The rate of increase is greater for 
slow rotation than for fast rotation.

 At the mass-shedding limit, the difference
between the two methods is 0.5%

Kacskovics, Barta, Vasúth. Astron. Nachr., 334:220121 (2023)



Current and future research

Add new representative EOS tables into CompOSE
→ LORENE/rotstar loads tabulated EOS models in
CompOSE format.
• CompOSE: online repository of EOS for use in

nuclear physics and astrophysics

Inclusion of new EOS tables into CompOSE

The background quantities for fast-rotating stationary
configurations will be computed by
LORENE/rotstar. We assume small deviations for the
fluid variables and study their linearized perturbations.

Study of GW-radiating oscillation modes

Exploration of the region of stable
configurations for compact stars with various
nucleonic and hybrid EOS in their cores.

Neutron star oscillations as sources of 
gravitational waves: f- and r-mode oscillations

Thank you very much for your attention!
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