V4-HEP workshop Theory and Experiment in High Energy Physics Prague, October 2, 2024

Deviation of observable quantities in rapid and slow-rotation approximation of neutron stars

Dániel Barta

Wigner Research Centre for Physics barta.daniel@wigner.hun-ren.hu

HUN WIGNER

Related papers: arXiv:2212.04885 & 2406.07319 Supported by NKFIH under OTKA grant agreement No. K138277

Motivation

Additional angular velocity can counteract the extra gravitational force

 \Rightarrow

Rotating compact stars can support a *larger mass* than their non-rotating counterparts.

- For slowly and uniformly rotating equilibrium solutions in a *Hartle– Thorne approximation* (quartic order in the angular velocity).
- For rapidly and uniformly rotating stars, we solve the *coupled* system of non-linear elliptic PDEs that are associated with the Einstein field equations (by implementing multi-domain spectral methods in the LORENE/rotstar codes).

To study the observable parameters of rotating relativistic compact stellar models based on the angular velocity and on the equations of state.

Stellar structure model in hydrostatic equilibrium

Hartle–Thorne slow-rotation approach

Exact solution of Einstein's equations describing spacetime in the vicinity of a *perfect fluid*, *stationary* and *axially symmetric* and *slowly rotating star*:

Hartle (1967), Hartle–Thorne (1968), Chandrasekhar–Miller (1974), Miller (1977):

- Slow-rotation approximation: $\Omega^2 \ll GM/R^3 = \Omega_{\text{Kepler}}^2$ (or mass-to-radius ratio $GM/c^2/R \gtrsim 0.1$)
- Terms up to 2nd order in Ω are taken into account ds^{2} $= e^{2\nu_{0}} [1 + 2h_{0}(r) + 2h_{2}(r)P_{2}(\cos\theta)]dt^{2}$ $+ e^{2\lambda_{0}} \left\{ 1 + \frac{e^{2\lambda_{0}}}{r} [2m_{0}(r) + 2m_{2}(r)P_{2}(\cos\theta)] \right\} dr^{2}$ $+ r^{2} [1 + 2k_{2}(r)P_{2}(\cos\theta)] \{d\theta^{2} + [d\phi - \omega(r)dt]^{2} \sin^{2}\theta\}$
- $\omega(r) 1$ st order in Ω
- $h_0(r)$, $h_2(r)$, $m_0(r)$, $m_2(r)$, $k_2(r) 2$ nd order in Ω , functions of r

Parameters that fully describing the star within HT approx.

Within the slow rotation approximation only quantities up to 2nd order in Ω are taken into account:

- J specific angular momentum
- *M* total gravitational mass
- Q dimensionless quadrupole moment

1. Computation of angular momentum From $(t\varphi)$ component of Einstein equation

$$\frac{1}{r^3} \frac{d}{dr} \left(r^4 j(r) \frac{d\widetilde{\omega}}{dr} \right) + 4 \frac{dj}{dr} \widetilde{\omega} = 0$$

$$\widetilde{\omega}(r) = \Omega - \omega(r) \quad j = e^{-(\lambda_0 + \nu_0)}$$

• Equation is solved with proper boundary condition

 $d\widetilde{\omega}$

• We want to calculate models for a given Ω – rescaling

r = R

2. Computation of mass

Calculation of the spherical perturbation (l = 0) quantities:

$$m_{0}(r): \quad \frac{dm_{0}}{dr} = 4\pi r^{2}(\rho+p)\frac{d\rho}{dp}\delta p_{0} + \frac{1}{12}r^{4}j^{2}\left(\frac{d\widetilde{\omega}}{dr}\right)^{2} - \frac{1}{3}r^{3}\widetilde{\omega}^{2}\frac{dj^{2}}{dr}$$

$$p_{0}(r): \quad \frac{dp_{0}}{dr} = -\frac{m_{0}(1+8\pi r^{2}p)}{(r-2m)^{2}} - \frac{4\pi(\rho+p)r^{2}}{r-2m}p_{0}$$

$$+\frac{1}{12}\frac{r^{4}j^{2}}{r-2m}\left(\frac{d\widetilde{\omega}}{dr}\right)^{2} + \frac{1}{3}\frac{d}{dr}\left(\frac{r^{3}j^{2}\widetilde{\omega}^{2}}{r-2m}\right)$$

• Total gravitational mass of the rotating star: $M(R) = M_0(R) + m_0(R) + J/R^3$

3. Computation of quadrupole moment: Calculation of the deviation from spherical symmetry

$$\frac{dv^2}{dr} = -\frac{2dv_0}{dr}h_2 + \left(\frac{1}{r} + \frac{dv_0}{dr}\right) \left[\frac{1}{6}r^4 j^2 \left(\frac{d\widetilde{\omega}}{dr}\right)^2 - \frac{1}{3}r^3\widetilde{\omega}^2 \frac{dj^2}{dr}\right]$$

$$\frac{dh_2}{dr} = -\frac{2v^2}{r(r-2m(r))\frac{dv_0}{dr}} + \left\{-2\frac{dv_0}{dr} + \frac{r}{r(r-2m(r))\frac{dv_0}{dr}} \left[8\pi(\rho+p) - \frac{4m(r)}{r}\right]\right\}h_2$$

$$+ \frac{1}{6} \left[r\frac{dv_0}{dr} - \frac{1}{2(r-2m(r))\frac{dv_0}{dr}}\right]r^3 j^2 \left(\frac{d\widetilde{\omega}}{dr}\right)^2 - \frac{1}{3} \left[r\frac{dv_0}{dr} + \frac{1}{2(r-2m(r))\frac{dv_0}{dr}}\right]r^2\widetilde{\omega}\frac{dj^2}{dr}$$

$$Q = \frac{8}{5}KM^3 + \frac{j^2}{M}$$
 where K comes from matching of internal and external solutions

Stationary and axisymmetric approach

Symmetries	Quasi-isotropic coordinates
We suppose that there exists two Killing vector fields:	The coordinates (t,r,θ,φ) with an only (r,θ) -
• $\vec{\xi}$ (timelike) to account for stationarity;	dependent line element are called quasi-
• $\vec{\chi}$ (spacelike) with closed orbits for axisymmetry	isotropic coordinates.

Under such conditions, it is possible to choose adapted coordinates, such that the *metric depends* only on two coordinates (r, θ) and takes the following form:

$$ds^{2} = -N^{2}dt^{2} + A^{2}(dr^{2} + r^{2}d\theta^{2}) + B^{2}r^{2}\sin^{2}\theta(d\varphi - \omega dt)^{2}$$

$$B = B(r,\theta) \text{ is defined by } B^{2} = \frac{g_{\varphi\varphi}}{r^{2}\sin^{2}\theta}$$

$$A = A(r,\theta) \text{ is defined by } g_{ab}dx^{a}dx^{b} = A^{2}(dr^{2} + r^{2}d\theta^{2})$$

$$\omega = \omega(r,\theta) \text{ is defined as the normalized scalar product of the two Killing vectors:}$$

$$\omega = \Theta \frac{\vec{\xi} \cdot \vec{x}}{\vec{\chi} \cdot \vec{\chi}} \Rightarrow g_{t\varphi} = \vec{\xi} \cdot \vec{\chi} \Rightarrow g_{t\varphi} = -\omega g_{\varphi\varphi}$$

$$Ml \text{ metrics are conformally related in 2 dimensions.$$
They differ from each other only by a scalar factor A^{2} .

The metric of an arbitrary static spherically symmetric spacetime can be expressed by spherical polar coordinates ($\tilde{t}, \tilde{r}, \tilde{\theta}, \tilde{\varphi}$) as

$$ds^{2} = -e^{2\tilde{\nu}}d\tilde{t}^{2} + e^{2\tilde{\lambda}}d\tilde{r}^{2} + \tilde{r}^{2}\left(\sin^{2}\tilde{\theta}d\tilde{\varphi}^{2} + d\tilde{\theta}^{2}\right)$$

or equivalently, by isotropic polar coordinates (t, r, θ, φ) as

Field equations in QI coordinates

In this gauge, the Einstein's field equations for *rigidly rotating stars* at the frequency Ω turn into a system of *four coupled non-linear elliptic partial differential equations*:

NON-LIN. ELLIPTIC PDES	DIFFERENTIAL OPERATORS
$\Delta_{3} v = 4\pi A^{2} (E + 3p + (E + p)U^{2}) + \frac{B^{2}r^{2}\sin^{2}\theta}{2N^{2}} (\partial \omega)^{2} - \partial v \partial (v + \beta)$ $\tilde{\Delta}_{3} (\omega r \sin \theta) = -16\pi \frac{NA^{2}}{B} (E + p)U - r \sin \theta \partial \omega \partial (3\beta - v)$ $\Delta_{2} [(NB - 1)r \sin \theta] = 16\pi NA^{2}Bpr \sin \theta$ $\Delta_{2} (v + \alpha) = 8\pi A^{2} [p + (E + p)U^{2}] + \frac{3B^{2}r^{2}\sin^{2}\theta}{4N^{2}} (\partial \omega)^{2} - (\partial v)^{2}$	$\Delta_{2} := \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}$ $\Delta_{3} := \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{r^{2} \tan \theta} \frac{\partial}{\partial \theta}$ $\tilde{\Delta}_{3} := \Delta_{3} - \frac{1}{r^{2} \sin^{2} \theta}$ $\partial a \partial b := \frac{\partial a}{\partial r} \frac{\partial b}{\partial r} + \frac{1}{r^{2}} \frac{\partial a}{\partial \theta} \frac{\partial b}{\partial \theta}.$
	Laplacian in a 2- dimensional flat space Laplacian in a 3- dimensional flat space
with the following notations: $\nu \coloneqq \ln N, \alpha \coloneqq \ln A, \beta$ • fluid 3-velocity in the φ -direction: $U = Br \sin \theta (\Omega - \omega) / N$ • total energy density: $E = \overline{\Gamma}(\varepsilon + p) - p$	In B Both measured by a locally non-rotating observer

 $\int \Gamma = \sqrt{1 - U^2} - \text{Lorentz factor}$

Using log-enthalpy

A perfect fluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

Stress–energy tensor (perfect fluid):

$$T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$$

where u^{μ} is the fluid 4-velocity, p its pressure and ε its total energy density.

EOS (T=0): $\varepsilon = \varepsilon(n_b)$ $p = p(n_b)$

Conservation laws

Energy–momentum conservation: $\nabla_{\mu}T^{\alpha\mu} = 0$ Baryon-number conservation: $\nabla_{\mu}(n_{\rm b}u^{\mu}) = 0$

• The only non-trivial hydrostationary equation is the *relativistic Euler's equation of motion* (which can be obtained from the spatial sector of the local energy–momentum conservation equation):

$$(\varepsilon + p)u^{\mu}\nabla_{\mu}u_{\alpha} + \left(\delta^{\mu}_{\alpha} + u^{\mu}u_{\alpha}\right)\nabla_{\mu}p = 0$$

• In the *stationary*, *axisymmetric* and *circular* case, Euler's equation *turns into a simple first integral*:

 $H + \nu - \ln \Gamma = \text{const.}$ (along a fluid line)

with the log-enthalpy

$$H = \ln\left(\frac{\varepsilon + p}{n_{\rm b}c^2}\right) \qquad \text{As before, notations for the metric function and} \\ \text{the Lorentz factor: } \Gamma = \sqrt{1 - U^2}, \nu = \ln N$$

Axial-vector meson-extended quark-meson model describes the quark matter in the NS core.

A perfect fluid at zero temperature is a good approximation for a neutron star (except immediately after its birth)

0

1000

 $\varepsilon \, [\text{MeV/fm}^3]$

1500

the SFHo and DD2 RMF models as well as some properties of neutron stars described by these models.

P. Kovács, J. Takátsy, J. Schaffner-Bielich, and Gy. Wolf. Phys. Rev. D 105 (2022), 103014, arXiv:2111.06127

LORENE (Langage Objet pour la RElativité NumériquE) is a set of C++ classes to solve various problems arising in numerical relativity, and more generally in computational astrophysics.

The computational domain of LORENE/rotstar is composed of three regions

- <u>The first region</u>, the so-called *nucleus*, is a spheroidal domain, for which the surface is adapted to the stellar surface.
- <u>The second region</u> is a *shell region* surrounding the nucleus. The inner boundary of this shell is the same as the outer boundary of the nucleus, while the outer boundary of the shell is a sphere with twice the radius of the nucleus at the equator.
- . <u>The third region</u> is a *compactified external domain* that extends from the outer boundary of the shell to spatial infinity. The compactified external domain allows us to impose exact boundary conditions at spatial infinity.

Solving the elliptic equations

- The *elliptic equations* are solved in each computational domain, and matching conditions are imposed so that values of the metric functions and their derivatives agree on both sides of each domain.
- > In LORENE, functions of r and θ are expanded in *Chebyshev polynomials* and *trigonometric functions*, respectively, and the latter are re-expanded in *Legendre polynomials* when it is advantageous.

Limits on the stability of rotating relativistic stars

Secular axisymmetric instability:

$$\left(\frac{\partial M(\rho_{\rm c}, J)}{\partial \rho_{\rm c}}\right)_{I} = 0$$
: Turning-point method to

locate the points where *secular instability sets in* for uniformly rotating relativistic stars.

Mass-shedding instability:

For the Hartle–Thorne external solution, the Keplerian (or mass-shedding) angular frequency can be written as:

$$\Omega_{\rm K} = \sqrt{\frac{GM}{R_{\rm eq}^{3}} \left[1 - jF_1(R_{\rm eq}) + j^2 F_2(R_{\rm eq}) + qF_3(R_{\rm eq}) \right]}$$

where $j = J/M^2$ and $q = Q/M^3$ are the dimensionless angular momentum and quadrupole moment.

The *solid lines* represent sequences computed by LORENE, and *dashed lines* represent those of our slow-rotating HT model on different frequencies.

Boundary limits on observables: Gravitational mass & equatorial radius

► For rotating stars, the turning point is a *sufficient* but *not a necessary condition* for *instability*: The onset of instability is at a configuration with slightly lower ε_c (for fixed angular momentum) than that of the star with M_{max} .

Deviation of the gravitational mass

The "mass-shedding" or Keplerian limit imposes a lower limit on the ε_c at each Ω.

The onset of the secular instability imposes a **upper limit** on the $ε_c$ at each Ω.

Deviation of the equatorial radius

but the deviation is smaller

For any given value of ε_c , the radius calculated by a fast rotational approach is always larger and increases rapidly with Ω .

The deviation increases with increasing Ω and decreases with increasing ϵ_c .

Deviation of the angular momentum

Comparison of the relative errors of observable parameters at M_{max}

f (Hz)

Current and future research

Inclusion of new EOS tables into **CompOSE**

Add new representative EOS tables into CompOSE \rightarrow LORENE/rotstar loads tabulated EOS models in CompOSE format.

• **CompOSE**: online repository of EOS for use in nuclear physics and astrophysics

Exploration of the region of stableconfigurations for compact stars with various nucleonic and hybrid EOS in their cores.

Study of GW-radiating oscillation modes

The background quantities for fast-rotating stationary configurations will be computed by **LORENE/rotstar**. We assume small deviations for the fluid variables and study their linearized perturbations.

Neutron star oscillations as sources of gravitational waves: *f*- and *r*-mode oscillations

Thank you very much for your attention!