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Large Scale Structure

Visualization of data from 2dF galaxy catalog.1

1. Colless, M. et al. Mon. Not. Roy. Astron. Soc. 328, 1039. arXiv: astro-ph/0106498 [astro-ph] (2001).
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Cosmic Microwave Background (CMB)
Radiation

CMB map reconstructed from Planck data.2

2. Ade, P. A. R. et al. Astron. Astrophys. 571, A1. arXiv: 1303.5062 [astro-ph.CO] (2014).
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Big Bang Nucleosynthesis (BBN)
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Production of light elements in BBN.3

3. Pospelov, M. & Pradler, J. Ann. Rev. Nucl. Part. Sci. 60, 539–568. arXiv: 1011.1054 [hep-ph] (2010).
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Conclusions from observational data

• The current Universe is homogeneous at scales larger than 100Mpc.

• The Universe was (nearly) isotropic during recombination. Relative
fluctuations of the CMB radiation are of the order of:

∆T

T
∼ 10−5.

• The energy density of the Universe during BBN was dominated by radiation
(particles moving with relativistic speeds).
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Cosmological inflation

Cosmological inflation allows for simultaneous solution for many problems in
cosmology:

• horizon problem

• flatness problem

• magnetic monopoles problem

Moreover, it provides a very natural explanation of CMB inhomogeneities.

Reheating in α-attractors | Tomasz Krajewski Page 5/23



CMB fluctuations measurement
Predictions of some
multi-field inflationary
models (especially
α-attractor ones4) fits very
well to current
measurements of CMB
radiation inhomogeneities.
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Constraints on inflationary models from Planck20185.

4. Carrasco, J. J. M. et al. Phys. Rev. D 92, 063519. arXiv: 1506.00936 [hep-th] (2015).

5. Akrami, Y. et al. arXiv: 1807.06211 [astro-ph.CO] (2018).
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α-attractor T-model

α-attractor models of inflation origin from supergravity.
T-model of inflation is characterized by the superpotential:

WH =
√
αµS

(
T − 1
T + 1

)n

,

and by the Kähler potential:

KH = −3α
2

log

(
(T − T̄ )2

4TT̄

)
+ SS̄ .
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Two-fields α-attractor T-model
The scalar sector can be expressed in terms of two real scalar fields ϕ and χ.
The scalar Lagrangian takes particularly simple form:

L = −1
2

(
∂µχ∂

µχ+ e2b(χ)∂µϕ∂
µϕ
)
− V (ϕ, χ), b(χ) := log(cosh(βχ)),

with the potential:

V (ϕ, χ) = M4
(
cosh(βϕ) cosh(βχ)− 1
cosh(βϕ) cosh(βχ) + 1

)n(
cosh(βχ)

)2/β2

, M4 := αµ2,

and

β :=

√
2
3α

.
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One-field α-attractor T-model

In the literature one-field simplification is considered with the potential of the
form:

V (ϕ, 0) = M4 tanh2n
(
β|ϕ|
2

)
.

In order to find inflationary trajectory (at least the part along χ = 0 direction)
one need to solve set of coupled differential equations:

H2 =
1
3

[
1
2
ϕ̇2 + V (ϕ, 0)

]
, ϕ̈+ 3Hϕ̇+ Vϕ(ϕ, 0) = 0.
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Perturbations in α-attractors
Linear perturbations are described in terms of gauge invariant Mukhanov-Sasaki
variables:

Qϕ := δϕ+
ϕ̇

H
Ψ, Qχ := δχ+

χ̇

H
Ψ,

which obey the following equations of motion

Q̈φ + 3HQ̇φ +

(
k2

a2 +m2
φ

)
Qϕ = 0, for φ = ϕ, χ,

where the effective masses m2
φ of perturbations are:

m2
ϕ = Vϕϕ(ϕ, χ), m2

χ = Vχχ(ϕ, χ) +
1
2
ϕ̇2R for R = −2β2.
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Perturbation around oscillating inflaton

After inflation inflaton oscillates around minimum of the potential loosing its
energy in favor of other degrees of freedom. Assuming that this process is slow
one may approximate evolution of (non)harmonic oscillations with slowly
decaying amplitude.
The equations of motion for Mukhanov-Sasaki variables can be written in Fourier
space as first order ordinary differential equations:(

Q̇φ,k

Π̇φ,k

)
=

(
0 1

−
(

k2

a2 +m2
φ

)
−3H

)(
Qφ,k

Πφ,k

)
=: Λφ(t)

(
Qφ,k

Πφ,k

)
,

with Λφ(t) being (nearly) periodic matrices.

Reheating in α-attractors | Tomasz Krajewski Page 11/23



Floquet Theorem
Let

ẋ(t) = U(t)x(t) (1)

be a linear first order differential equation, where:
• x(t) is a column vector of dim N ,
• U(t) is a periodic N × N matrix valued function with period T .

The fundamental solution O(t, t0) of eq. (1) can be expressed as:

O(t, t0) = P(t, t0) exp ((t − t0)V )

where:
• P(t, t0) is a periodic matrix valued function with period T ,
• V is constant N × N matrix satisfying O(t0 + T , t0) = exp (TV ).
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Amplification of linear perturbations

In virtue of Floquet theorem one deduces that linear perturbations can be
approximated by:

Qφ, k(t) =
∑
ψ=ϕ,χ

Qψ
φ,k(t, t0) exp

(
µψφ,k(t − t0)

)
during few oscillations of inflaton field.
Large positive real parts of Floquet exponents µψφ,k indicate amplification of
perturbations, thus instability.
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Floquet exponents for the inflaton (left panel) and the spectator (right panel) perturbations with n = 3/2 and α = 10−3.6

6. Krajewski, T. et al. Eur. Phys. J. C 79, 654. arXiv: 1801.01786 [astro-ph.CO] (2019).
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Hypernatural α-attractor T-model

The somewhat different parametrization Z = e iθ tanh φ
2 scalar Lagrangian takes

the following form:7

L = −1
2

(
∂µφ∂

µφ− 3α
4

sinh2 (βφ) ∂µθ∂
µθ

)
− V (φ, θ),

with the potential:

V (φ, θ) = M4
[(

1 − c−2 tanh2 φ√
6α

)
+ 4A cos2

nθ

2
tanhn+2 φ√

6α

]
.

7. Linde, A. et al. JCAP 07, 035. arXiv: 1803.09911 [hep-th] (2018).
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Floquet exponents for the inflaton (left panel) and the spectator (right panel) perturbations with c = 0.75, A = 0.1, n = 3/2 and

α = 10−3.8

8. Kulejewski, M. Bachelor’s Thesis (Faculty of Physics, University of Warsaw, 2022).
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Energy transfer
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Evolution of energy components as a function of the number of e-folds N from the end of inflation for n = 1.5, α = 10−3 (left panel),

n = 1.5, α = 10−4 (right panel).9

9. Krajewski, T. & Turzyński, K. JCAP 10, 005. arXiv: 2204.12909 [astro-ph.CO] (2022).
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Barotropic parameter

w =
p

ρ
=

⟨1
2

(
e2b(χ)ϕ̇2 + χ̇2

)
− 1

6a2

(
e2b(χ)(∇ϕ)2 + (∇χ)2

)
− V (ϕ, χ)⟩

⟨1
2

(
e2b(χ)ϕ̇2 + χ̇2

)
+ 1

2a2 (e2b(χ)(∇ϕ)2 + (∇χ)2) + V (ϕ, χ)⟩
,
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The evolution of the barotropic parameter w for n = 1.5, α = 10−3 (left panel), n = 1.5, α = 10−4 (right panel).9
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Evolution of spectator field perturbations
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The time evolution of spectator field perturbations for different number of wavenumbers k for n = 1.5, α = 10−3 (left panel),

n = 1.5, α = 10−4 (right panel).9

9. Krajewski, T. & Turzyński, K. JCAP 10, 005. arXiv: 2204.12909 [astro-ph.CO] (2022).
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Evolution of spectator field perturbations
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The time evolution of spectrum of spectator field perturbations for n = 1.5, α = 10−3 (left panel), n = 1.5, α = 10−4 (right panel).9

9. Krajewski, T. & Turzyński, K. JCAP 10, 005. arXiv: 2204.12909 [astro-ph.CO] (2022).
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Evolution of inflaton field perturbations
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The time evolution of spectrum of inflaton field perturbations for n = 1.5, α = 10−3 (left panel), n = 1.5, α = 10−4 (right panel).9

9. Krajewski, T. & Turzyński, K. JCAP 10, 005. arXiv: 2204.12909 [astro-ph.CO] (2022).
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Spectrum of gravitational waves

107 108 109

f [Hz]

10−32

10−25

10−18

10−11

10−4

Ω
G
W
h
2

-0.2

0.0

0.2

0.4

0.6

N

107 108 109

f [Hz]

10−32

10−26

10−20

10−14

10−8

Ω
G
W
h
2

-0.3

-0.2

-0.1

0.0

0.1

N
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9. Krajewski, T. & Turzyński, K. JCAP 10, 005. arXiv: 2204.12909 [astro-ph.CO] (2022).
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Summary

1. Geometrical destabilization may take place in multi-field inflationary models
with negative curvature of the field space.

2. Initial stages of preheating can be studied using Floquet analysis, however it
breaks down when the produced fluctuations backreact.

3. Lattice simulations proofed that short wavelength fluctuations of the inflaton
field are produced by non-linear interactions from spectator ones.

4. In α-attractors production of inflaton fluctuations is accompanied by
intensive emission of gravitational waves.
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Thank you for your attention.



Field space metric
Field space in α-attractor T-model has non-trivial structure:

G =

(
1 0
0 e2b(χ)

)
,

with negative curvature:
R = −2β2.

The so called geometrical destabilization is possible with two scenarios:

• during inflation leading to perturbation of inflationary trajectory or
premature end of inflation,

• around the end of inflation leading to fast (p)reheating.
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Multi-field models of inflation
Geometrical destabilization may take place when action for scalar fields contain
non-canonical kinetic terms.
Let us concentrate on non-linear sigma models with action given by:

S =

∫
d4x

√−g

[
M−2

Pl R − 1
2
GIJ

(
ϕK
)
∂µϕ

I∂µϕJ − V
(
ϕK
)]

.

Non-canonical kinetic terms can be introduced directly into an inflationary model
(as in the case of supergravity) or can come from quantum corrections in
effective theory approach.

Leff
(
ϕI
)
= Lℓ

(
ϕI
)
+
∑
i

ci
Oi

(
ϕI , ∂ϕI , . . .

)
Λδi−4

Reheating in α-attractors | Tomasz Krajewski Page 2/6



Geometry of field space

• Non-canonical kinetic terms can be interpreted as a manifestation of
non-trivial geometry of the field space.

• Field space has a Riemman geometric structure with metric given by GIJ .

• If the Riemann tensor associated to the field-space metric RI
KLJ is non-trivial

the field space is curved.
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Inflationary trajectory

The inflationary trajectory is solution of following set of equations:

3H2M2
Pl =

1
2
σ̇2 + V ,

ḢM2
P = −1

2
σ̇2 ,

Dt ϕ̇
I + 3Hϕ̇I + G IJV,J = 0 .

where 1
2 σ̇

2 ≡ 1
2GIJ ϕ̇

I ϕ̇J is the kinetic energy of the fields, DtA
I ≡ ȦI + ΓIJK ϕ̇

JAK

is the covariant derivative in the field space and H := ȧ/a is the Hubble
parameter with a being the scale factor of the FRW metric.

Reheating in α-attractors | Tomasz Krajewski Page 4/6



Linear perturbations
The behavior of linear fluctuations around inflationary trajectory is described by
the second-order action:

S(2) =

∫
dt d3x a3

(
GIJDtQ

IDtQ
J − 1

a2GIJ∂iQ
I∂ iQJ −MIJQ

IQJ

)
,

where Q I := δϕI + ϕ̇I

H
Ψ’s are so-called Mukhanov-Sasaki variables and MIJ is a

mass matrix:

M I
J = V ,I

;J −
1

a3M2
Pl

Dt

(
a3

H
ϕ̇I ϕ̇J

)
−RI

KLJ ϕ̇
K ϕ̇L.

Equations of motion read:

DtDtQ
I + 3HDtQ

I +
k2

a2Q
I +M I

JQ
J = 0.
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Effective mass
We can rewrite EOMs in the adiabatic-entropic basis (e Iσ, e

I
s ) where e Iσ := ϕ̇I/σ̇ is

tangent to inflationary trajectory and e Is is orthonormal to e Iσ.
The EOM for superhorizon modes of the entropic fluctuations simplifies to

Q̈s + 3HQ̇s +m2
s(eff)Qs = 0 ,

with the effective entropic mass

m2
s(eff)

H2 =
V;ss

H2 + 3η2
⊥ + ϵRM2

Pl ,

where η⊥ ≡ −V,s

Hσ̇
, R is the field-space Ricci scalar and ϵ is the slow-roll

parameter.
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