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Beyond freeze-in: dark matter via inverse phase transition and
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Main Message

Ultralight DM can be created for minuscular couplings
and still produce observable GW

NANOGrav GW can be from Melting Domain Walls of DM

Scaling Regime in DW evolution seems to be only a local
attractor, details depend on initial conditions



Spontaneous Breaking of Discrete Symmetry

Z, -symmetric scalar field
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Energy-Momentum and Surface Tension

T" = 0 0 p — 5" (% (a¢)2 — V(¢)>

A
17 5774 cosh™ (;) diag (1,1,1,0)

24/ 24
Oall = JdZT(()) =3 n>(T)




Note that Great Wall
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Cosmological consequences of a spontaneous breakdown of a

discrete symmetry
Ya. B. Zel'dovich, |. Yu. Kobzarev, and L. B. Okun’

Institute for Applied Mathematics, USSR Academy of Sciences

(Submitted January 31, 1974)

Zh. Eksp. Teor. Fiz. 67, 3-11 (July 1974)

In theories involving spontaneous symmetry breakdown one may expect a domain structure of the
vacuum. Such a structure does not exist near a cosmolgical singularity, when the temperature is
above the Curie point, but this structure must appear later during the cosmological expansion and
cooling down. We discuss the properties of the domain interfaces and of the space with domains in
the large, the law of cosmological expansion in the presence of domains, and the influence of
domains of the homogeneity of the Universe at a late stage.




Large CMB fluctuations
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Even Larger Mass

Mass inside the horizon H ™!
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“Apparently, domain walls are cosmological bad news...”




PHYSICAL REVIEW D VOLUME 9, NUMBER 12 15 JUNE 1974

Gauge and global symmetries at high temperature*

Steven Weinberg
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 19 February 1974)

It is shown how finite-temperature effects in a renormalizable quantum field theory can
restore a symmetry which is broken at zero temperature. In general, for both gauge
symmetries and ordinary symmetries, such effects occur only through a temperature-depen-
dent change in the effective bare mass of the scalar bosons. The change in the boson bare
mass is calculated for general field theories, and the results are used to derive the critical
temperatures for a few special cases, including gauge and nongauge theories. In one case, it
is found that a symmetry which is unbroken at low temperature can be broken by raising the
temperature above a critical value. An appendix presents a general operator formalism for
dealing with higher-order effects, and it is observed that the one-loop diagrams of field
theory simply represent the contribution of zero-point energies to the free energy density.
The cosmological implications of this work are briefly discussed.

PHYSICAL REVIEW D VOLUME 23, NUMBER 4 15 FEBRUARY 1981

Gravitational field of vacuum domain walls and strings

Alexander Vilenkin
Department of Physics, Tufts University, Medford, Massachusetts 02155
(Received 10 October 1980)

The gravitational properties of vacuum domain walls and strings are studied in the linear approximation of general
relativity. These properties are shown to be very different from those of regular massive planes and rods. It is argued
that the domain walls are gravitationally unstable and collapse at a certain time ~7, after their creation. If the
vacuum walls ever existed, they must have disappeared at ¢ <z,."



Z, -symmetric DM scalar field y coupled to
¢ - a multiplet of N thermal degrees of freedom
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Direct Phase Transition

Early universe spontaneously Broken Phase Avoid too much friction to start rolling
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Tension/energy per unit surface O, ;7 = 773(T) melting away as o T !
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In the scaling regime (Kibble 1976): one domain wall per Hubble volume:
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Usual Constant
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Let us first study usual constant tension DW and
associated GW
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CosmoLattice

“vacuum’’ 1nitial conditions
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Figure 2: Snapshots of domain wall evolution in the case of vacuum initial conditions at different
conformal times 7 in units of \/_;An Simulations have been performed starting from vacuum initial
conditions on a lattice with the grid number N = 512. The visible dot-like structures are small size
domain walls.

Dankovsky, Babichev, Gorbunov, Ramazanov, Vikman (2024)
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Figure 5: Histograms showing the distribution of the quantity n - A versus A, where A is the
comoving domain wall area in units of ﬁg, and n is the number of domain walls with the area A.

Distributions are considered at different conformal times 7 in units of \/-%\ Simulations have been
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Scaling Parameter (constant tension DW) < >
e\ L
i

CosmoLattice

T T S S P | ~.
0.8 i i ; ? % 1 f 1 Figueroa, Florio,
| A ; Torrenti, Valkenburg
d ot

0.6

SV

@ A
——
—@

0.4 o . by Al
0.2 __fZCﬂhv[{ aV

vacuum N=512 k=1
vacuum N=1024 k=1
vacuum N=512 no cutoff
vacuum N=1024 no cutoff
thermal N=512 no cutoff
thermal N=1024 no cutoff
¢ thermal N=512 k=1

2 4 6 8 10 12 14
T

HH ol ol o

0.0

Figure 4: The area parameter £ inferred in Eq. @ is obtained from numerical simulations
performed on lattices with the grid numbers N = 512 and N = 1024 starting from vacuum and
thermal initial conditions with and without cutoffs at high momenta. Conformal time 7 and
conformal momentum k are in units of \/_LM and /\n, respectively. The parameter ¢ taking a
constant value reflects that the domain wall network enters the scaling regime. Expectation values

and error bars are obtained from 10 simulations run with different base seed values.

Dankovsky, Babichev, Gorbunov, Ramazanov, Vikman (2024)

Cf. Hiramatsu, Kawasaki, Saikawa (2013);
Ferreira, Gasparotto, Hiramatsu, Obata, Pujolas (2023);
Kitajima, Lee, Takahashi, Yin (2023)



Gravitational Waves

Einstein’s formula
oy o

works well for domain wall network!!!

On the estimation of gravitational wave spectrum from cosmic domain walls

Takashi Hiramatsu (Kyoto U., Yukawa Inst., Kyoto), Masahiro Kawasaki (Tokyo U., ICRR and Tokyo U., IPMU), Ken'ichi
Saikawa (Tokyo Inst. Tech.) (Sep 19, 2013)

Published in: JCAP 02 (2014) 031 « e-Print: 1309.5001 [astro-ph.CO]
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GW energy density <>
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Figure 6: The energy density of GWs in units of An* emitted by the domain wall network is
obtained from numerical simulations on lattices with the grid numbers N = 1024 and N = 2048
starting from vacuum and thermal initial conditions with and without cutoffs. Conformal time 7
is in units of ﬁ The expectation value 7 is set at 7 = 6 - 10'® GeV. Rescaling to arbitrary 7 is

achieved by multiplying the energy density pg, by (1/6 - 101¢ GeV)2.

Dankovsky, Babichev, Gorbunov, Ramazanov, Vikman (2024)
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Figure 1: Spectrum of GWs emitted by the domain wall network at radiation domination starting Qp A — X 0
with vacuum (top panel) and thermal (bottom panel) initial conditions defined in Egs. @ and @, W H2 pe ak
respectively. Conformal momenta and conformal times are in units of v/An and \/—LM, respectively. l
The sharp upper cutoff at k.,; = 1 is applied in the case of vacuum initial conditions. The
expectation value 7 is set at 7 = 6 - 1016 GeV. Rescaling to arbitrary 7 is achieved by multiplying M 1 to
the spectra by (1/6-10'% GeV)%. Simulations have been performed on a lattice with a grid number & lng
N = 2048. The positions of diamonds correspond to the comoving Hubble scale k = 2nHa at Domain Walls

the time associated with the corresponding curves, while stars show the inverse domain wall width
1/6w, i.e., k = 2ma/dy.
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More on f* in IR

Dimensional analysis
supported by simulation Q
for constant tension
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e.g. J0437-4715 has a
period of 0.005757451936712637 s
with an error of 1.7 X 10717 s

15 years of observations of 68 millisecond pulsars

~ The Washington Post
@h e N cm Hﬂl'k @111125 In a major discovery, scientists say space-

time churns like a choppy sea
ne Cosmos Is Thrumm ing Mth The mind-bending finding suggests that everything around us is constantly being roiled by low-frequency gravitational

Gravitational Waves, Astronomers e
Find

Radio telescopes around the world picked up a telltale hum

reverberating across the cosmos, most likely from supermassive
black holes merging in the early universe.
June 28, 2023

fy Share full article ~ [ J 362

The Green Bank Observatory in Gr
gravitational waves. (Michael S. Williamson/The Washington Post)

een Bank, WVa., was among the observatories used to track pulsars as a way of detecting low-frequency

The Very Large Array on the Plains of San Agustin, N.M., one of three radio telescopes
that worked with a global consortium to detect the timing of pulsars. NRAO/AUI/NSF




Correlation between pulsars, [(Eab)

Hellings—Downs curve
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https://doi.org/10.3847/2041-8213/acdac6
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Jim Hoover

The 100-meter Green Bank Telescope, the world's largest fully steerable telescope and a core instrument

Log10[Qqgwhj]

for pulsar timing array experiment.

parameters g = 10718, f=1/g*=1. N=24. g. =75

~8.0
Log10[f(Hz)]



Inverse Phase Transition At Meltdown

B (Oy)? (Mz — u(, X)) e Ay
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Late Universe
DW melt down and disappear

then oscillations around restored symmetric vacuum

Early Universe
spontaneously Broken Phase with VEV slowly moving

‘ u>M , | u<Mm

Tachyonic mass u(z)

slowly decreases /
redshifts ‘\ ‘
due to cosmological ?
expansion |
~Xmin + X min P
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Dynamics only depends on
one single free dimensionless parameter
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Allowed Parameter Space
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Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes EM Black Holes

Solar Masses

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern
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