# Overview of the Past, Present, and Future of the Pierre Auger Observatory: Advantages and limitations concerning accelerator data

#### Olena Tkachenko

Institute of Physics of the Czech Academy of Sciences

on behalf of the Pierre Auger Collaboration

Theory and Experiment in High Energy Physics workshop Prague, 2024



DAG



#### What are the questions

- Origin & sources of cosmic rays ?
- Acceleration & propagation ?
- Interactions ?

#### What do we measure

- Energy spectrum
- Arrival directions
- Mass composition

# Extensive Air Showers



Olena Tkachenko

Pierre Auger Observatory: Past, Present, Future

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 3/10/2024

# The Pierre Auger Observatory

- Located in Malargue, Argentina
- Total area of 3000 km<sup>2</sup>

### • Surface Detector (SD)

- 1660 stations
- ► 100% duty cycle

### • Fluorescence Detector (FD)

- 27 telescopes
- ► 15% duty cycle

### • Radio and muon detectors

- Phase I: 2004-2022
- AugerPrime upgrade: completed in 2023
- Phase II: till > 2035





# The Pierre Auger Collaboration

Argentina Australia Belgium Brazil Colombia Czech Republic France Germany Italy

Mexico Netherlands Poland Portugal Romania Slovenia Spain USA





Olena Tkachenko

Pierre Auger Observatory: Past, Present, Future

3/10/2024

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Energy Spectrum

![](_page_6_Figure_1.jpeg)

3/10/2024 6

Energy spectrum

![](_page_7_Figure_1.jpeg)

Pierre Auger Observatory: Past. Present. Future

### Cosmic-ray mass composition

![](_page_8_Figure_1.jpeg)

# Combining spectrum and composition measurements

![](_page_9_Figure_1.jpeg)

# Cosmic Ray Arrival Directions

![](_page_10_Figure_1.jpeg)

Science 357 (2017) 1266

- Hotspot of  $4\sigma$  at Cen A/M83/NGC4945 direction
- $\bullet\,$  Signal at 3.8 $\sigma$  for Starburst Galaxies catalog
- 5 $\sigma$  is expected in the Phase II operation

- 3D dipole above 8 EeV
- $\bullet~\sim~55^\circ$  away from 2MRS dipole
- $6.6\sigma$  significance
- Strong indication for extragalactic origin of UHECRs at > 8 EeV

![](_page_10_Figure_10.jpeg)

![](_page_11_Figure_0.jpeg)

### Hadronic interaction properties

![](_page_12_Figure_1.jpeg)

R. Ulrich et al. Phys. Rev. D 83, 054026 (2011)

Olena Tkachenko

Pierre Auger Observatory: Past, Present, Future

3/10/2024 12/19

< □ > < 合型

Interaction cross sections for UHECR

 $rac{dp}{dX_1} = rac{1}{\lambda_{
m int}} {
m e}^{-X_1/\lambda_{
m int}}$  $\sigma^{
m int} = rac{m_{
m air}}{\lambda^{
m int}}$ 

Pierre Auger Observatory: Past, Present, Future

3/10/2024

13/19

Olena Tkachenko

Interaction cross sections for UHECR

 $rac{dp}{dX_1} = rac{1}{\lambda_{
m int}} {
m e}^{-X_1/\lambda_{
m int}}$ 

 $\sigma^{
m int} = rac{m_{
m air}}{\lambda^{
m int}}$ 

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

Olena Tkachenko

Pierre Auger Observatory: Past, Present, Future

## Interaction cross sections for UHECR

![](_page_15_Figure_1.jpeg)

3/10/2024

## Interplay between mass composition interaction cross section

![](_page_16_Figure_1.jpeg)

PoS (ICRC2023) 438

## Muon Measurements with Auger

- Muon Production Depth in SD
- Hybrid showers ( $<60^{\circ}$ )
- Inclined hybrid showers (60-80°)
- Direct measurement with undeground detectors
- Radio detection

![](_page_17_Figure_6.jpeg)

Pierre Auger Observatory: Past, Present, Future

## Muon Measurements with Auger: inclined showers

- Avarage number of muons exceed the model predictions
- Eluctuations are within within the expected range from the models
- In a conflict with  $X_{\text{max}}$  measurements

![](_page_18_Figure_4.jpeg)

1.0

0.8

0.6

0.2

 $\langle \ln R_\mu \rangle$ 0.4  EPOS LHC D OGSIET II-04

♦ OGSIET II-03

 $E = 10^{19} \text{ eV}, \theta = 67^{\circ}$ 

Auger

data

# The AugerPrime Upgrade

- Scintilator plates on top of each SD:
  - better separation between muonic and electromagnetic components
- Upgraded SD electronics:
  - better time structure of traces, more channels
- Installation of small PMTs:
  - increased dynamic range
- Extension of the undeground muon detector:
  - direct muon measurements
- Radio antenna on top of each SD

![](_page_19_Picture_10.jpeg)

# Summary

The Pierre Auger Observatory has been successfully taking data since 20 years:

- Precise measurement of the energy spectrum at the highest energies
- Detailed evolution of mixed primary mass composition with energy
- Astronomy at the highest energies:
  - Obervation of the large-scale anisotropies pointing at the extragalactic origin of UHECR
  - Correlation of the intermediate scale anistropy with starburst galaxies
- Particle Physics at the highest energies:
  - Studies on the particle interactions beyond LHC range
  - $\blacktriangleright$  Observed inconsistencies in the hadronic interaction models  $\Rightarrow$  muon puzzle

What's next?  $\Rightarrow$  Stay tuned!

- Upgrade AugerPrime is finalized
- The Phase II of operation has already started

▶ < ⊒ ▶