ATLAS QCD jet measurements

#### Ota Zaplatílek <sup>1</sup> behalf ATLAS Standard Model group

<sup>1</sup>FNSPE, CTU in Prague

Theory and Experiment in High Energy Physics, November 2, 2024



#### Introduction

Recent ATLAS QCD jet measurements including:

- Proton-proton, 13 TeV
- LHC Run 2 dataset, 140 fb<sup>-1</sup> (resp. 139<sup>-1</sup>), 2015-2018
- Anti- $k_T R = 0.4$  particle-flow jets
- Unfolded to particle level
- 1) Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS (STDM-2020-04)
- Measurements of Lund subjet multiplicities in 13 TeV proton-proton collisions with the ATLAS detector (STDM-2023-07)
- 3) Determination of the strong coupling constant from transverse energy-energy correlations in multijet events at  $\sqrt{s} = 13$  TeV with the ATLAS detector (STDM-2018-51)
- Measurements of multijet event isotropies using optimal transport with the ATLAS detector (STDM-2020-20)



#### Lund subjet plane

- Lund plane to probe different non-pQCD effects, testing current and future Parton Shower Models
- Lund plane multiplicity counting number of subjets above a specified relative transverse momentum requirement in a jet's angle-ordered clustering history (jet re-clustering with Cambridge/Aachen alg.)



sequence

$$k_t = p_{\mathrm{T}}^{\mathrm{emistion}} imes \Delta R(p^{\mathrm{emition}}, p^{\mathrm{core}})$$

#### Lund plane subjet multiplicities

- k<sub>t</sub> > 10 GeV cut (middle, right):
  - Best description with Herwig Angular order PS
  - Sherpa and Powheg+Pythia increasing disagreement with increasing multiplicity
- $k_{\rm t} < 10$  GeV cut (left):
  - More complicated trends
  - Herwig Angular best for low multiplicities
  - Sherpa DIRE best for high multiplicities





5/10

#### ATLAS TEEC and ATEEC measurements

• Transverse energy-energy correlation (TEEC) as transverse-energy-energy-weighted distribution of the azimuthal differences between jet pairs

$$\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij}^{N} \frac{\mathcal{E}_{T_{I}}^{A} \mathcal{E}_{T_{j}}^{A}}{\left(\sum_{k} \mathcal{E}_{T_{k}}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij})$$

Transverse energy-energy correlation asymmetry (ATEEC) as azimuthal asymmetry of forward (cos φ > 0) and backward (cos φ < 0) TEEC parts</li>



## (A)TEEC Results

#### Data to Theory comparison:

- One inclusive H<sub>T,2</sub> bin and 10 exclusive H<sub>T,2</sub> bins
- NNLO calculation as state-of-art
  - Significant improvement with above |cos(φ)| > 0.8
  - Significant reduction of theoretical uncertainties

#### $\alpha_s(Q)$ extraction:

Running scale Q as half averaged  $\hat{H}_T$  of all final-state partons in each  $H_{T,2}$  bin



Good agreement with other measurements and RGE prediction No deviation from RGE suggesting new coloured fermions



#### ATLAS Multijet event isotropy

- Novel isotropy observables as generalization of Thrust JHEP 08 (2020) 084
- Solving Optimal transport problem using Energy-Mover's Distance (EMD)
  - Find minimal amount of work to rearrange one event  $\mathcal{E}$  into referenced event  $\mathcal{E}' \in \mathcal{U}$ , (How far is a collider event  $\mathcal{E}$  from a symmetric radiation patterns  $\mathcal{U}$ )
  - Isotropy  $I(\mathcal{E}) = EMD(\mathcal{E}, \mathcal{U}), I \in \langle 0, 1 \rangle$ , More isotropic event  $I \rightarrow 0$ , less isotropic event  $I \rightarrow 1$
  - Three isotropy event shape observables:  $I_{Ring}^2$ ,  $I_{Ring}^{128}$ ,  $I_{Cvl}^{16}$
  - $I_{Ring}^2$  equivalent to transverse thrust but rescaled to range  $\langle 0,1
    angle$



Generalized event shape variables

Infrared and collinear safe variables by construction

# Event isotropy $I_{\text{Ring}}^2$

- Unfolded data compared to several state-of-art MC model
- Good agreement in non-isotropy region (dijet like events) for LO and NLO
- More isotropic events more differences observed in different MC
- More isotropic events described better with MC NLO matrix elements (Powheg, Herwig) than LO (Pythia, Sherpa)
- Best description of  $l^2_{\rm Ring}$  for NLO Herwig angle-ordered parton shower
- Dominant sys. unc.
  - Jet Energy Scale (JES) and Jet Energy Resolution (JER)
  - Choice of MC model for unfolding (MC Model)



#### Conclusion

- Many interesting/useful ATLAS QCD jet measurements
  - $R_{32}$  and (A)TEEC  $\alpha_s$  extraction
  - $R_{xy}$  reference for future MC development and MC tuning
  - Lund subjet multiplicities reference for MC parton shower development
  - Event isotropies new event shape variables, testing new features of QCD radiation, new insights to MC tuning

## Thank you for your attention.

# Back-up

#### Jet cross-section ratio measurements - results

- Improved JES unc.
  - Jet flavor response
  - Single hadron response
- · Cancellation of correlated sys. unc. in ratio
- $p_{\rm T} > 60$  GeV,  $H_{\rm T,2} > 250$  GeV, |y| < 4.5

- Compared to several MC generators
- NLO pQCD (NLOJet++)
- NNLO pQCD (FivePointAmplitudes, OpenLoops2)
- High Energy Jets HEJ



#### Lund plane subjet multiplicities

Selection:

- Anti-*k*<sub>T</sub> 0.4 particle-flow jets
- $p_{T,1} > 120 \text{ GeV}$
- p<sub>T,2</sub> > 120 GeV
- $|y_{\rm jet}| < 2.1$
- $p_{T,1}/p_{T,2} < 1.5$  (Dijet balance to reduce background, simplify interpretation)
- Only the two leading jets are included in the measurement

Specifics:

- *p*<sub>T</sub> bins: 300–4500 GeV
- Relative rapidity bins: more-central and more-forward (quark-initiated jets as more centre, qluon-initiated jet as more forward)
- kt bins: 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100 GeV
- Bayesian unfolding, 4 iterations

#### Lund plane subjet multiplicities

- Pythia: LO ME, default string hadronization, dipole p<sub>T</sub>-ordered PS
- Powheg+Pythia: NLO ME, string hadronization, dipole p<sub>T</sub>-order PS
- Sherpa (2.2.5): LO ME, default AHADIC cluster hadronization, default Catani-Seymour dipole PS
- Sherpa (2.2.5 Lund): LO ME, string hadronization, default Catani-Seymour dipole PS
- Sherpa (2.2.11): LO ME, tuned cluster hadronization, default p<sub>T</sub> ordered PS
- Sherpa (2.2.11 DIRE): LO ME, tuned cluster hadronization, with alternative DIRE PS which incorporates some aspects of higher-order splitting functions in QCD
- Sherpa (3.0.0, ALARIC): LO ME, string hadronization, with ALARIC PS, extended to cover initial-state radiation
- · Herwig (Ang. Ord): NLO ME, default cluster hadronization, default Angular order PS
- NLO matched to NNLL resummation (R. Medves, A. Soto-Ontoso and G. Soyez), non-perturbative effects using (PS+HAD+MPI)/(PS)



## (A)TEEC analysis details

natic uncertainty [%]

• Proton-proton collisions  $\sqrt{s} = 13$  TeV, 139 fb<sup>-1</sup>, FullRun2 Dataset, Unfolded data to particle level, (57.5 M events after selection)



- Anti- $k_T R = 0.4$  calibrated particle-flow jets
  - $p_{\rm T} > 60~{
    m GeV}$
  - $|\eta| < 2.4$

• 
$$H_{T,2} = p_{T,1} + p_{T,2} > 1$$
 TeV

Extended energy range, improved experimental precision

Dominated by JES+JER and MC modeling

NNLO pQCD calculations applied for the first time in  $2 \rightarrow 3$  jets process

- Significant reduction of theoretical unc.
- Dominant scale unc. reduced by factor of 3 with new NNLO prediction



#### Strong coupling $\alpha_s$ extraction - $\chi^2$ fit for $\alpha_s(m_Z)$

- $\chi^2$  function for  $\alpha_s = \alpha_s(m_Z)$  extraction
- Considering correlations of sys. unc., nuicent

$$\chi^{2}(\alpha_{s},\vec{\lambda}) = \sum_{\text{bins}} \frac{\left(x_{i} - F_{i}(\alpha_{s},\vec{\lambda})\right)^{2}}{\Delta x_{i}^{2} + \Delta \zeta_{i}^{2}} + \sum_{k} \lambda_{k}^{2}$$

$$F_i(\alpha_s, \vec{\lambda}) = \psi_i(\alpha_s) \left(1 + \sum_k \lambda_k \sigma_k^{(i)}\right)$$

$$\psi_i(\alpha_s) = \sum_{n=0}^{3} p_n(\cos \phi_i) \cdot [\alpha_s(m_Z)]^n$$

 ψ<sub>i</sub>(α<sub>s</sub>) ... analytical function, obtained by fitting predicted values of the TEEC (ATEEC) as a function of α<sub>s</sub> in each (H<sub>T,2</sub>, cos φ) bin to a third-order polynomial in α<sub>s</sub>

- x<sub>i</sub> ... ith data point
- F<sub>i</sub> ... theoretical prediction
- Δx<sub>i</sub> ... stat. unc. in data
- Δζ<sub>i</sub> ... stat. unc. in theoretical prediction
- $\sigma_k^{(i)}$  ... relative sys. unc. in bin *i* for *k*th source of correlation
- $ec{\lambda}$  ... nuisance parameters a third-order polynomial in  $lpha_s$



## Strong coupling $\alpha_s(m_Z)$ - results

#### • $\alpha_s(m_Z)$ results: $\alpha_s(m_Z)^{TEEC} = 0.1175 \pm 0.0006(\exp.)^{+0.0034}_{-0.017}$ (theo.) $\alpha_s(m_Z)^{ATEEC} = 0.1185 \pm 0.0009(\exp.)^{+0.0025}_{-0.012}$ (theo.)

- TEEC with better experimental precision, ATEEC with better theoretical precision
- Correlation coefficient



 $ho=0.86\pm0.02( ext{exp.})$ 



10 / 10

#### Renormalization group equation

Evolution of  $\alpha_s(\mu_R)$  using Renormalization group equation (RGE):

$$\mu_R^2 \frac{\alpha_s(\mu_R^2)}{d\mu_R^2} = \beta \left( \alpha_s(\mu_R^2) \right) = -\alpha_s^2(\mu_R^2) \sum_{i=0}^{\inf} \beta_i \left[ \alpha(\mu_R^2) \right]^i$$

- $\mu_R$  ..... renormalization scale
- $\beta\left( lpha_{s}(\mu_{R}^{2}) 
  ight)$  ..... beta function
- $\beta_0 = 11 \frac{2}{3}n_f$  ..... tree level
- $\beta_1 = 102 \frac{38}{3}n_f$  ..... one-loop level
- $\beta_2 = \frac{2857}{2} \frac{5033}{18}n_f \frac{325}{54}n_f^2$  ... two-loop level
- n<sub>f</sub> ... the number of active flavours at the scale Q,
   i.e. the number of quarks with mass m < Q.</li>

Approximate analytic solution for  $\alpha_s$  at NNLO in pQCD:

$$\frac{\alpha_s(\mu_R^2)}{4\pi} = \frac{1}{\beta_0 x} \left[ 1 - \frac{\beta_1}{\beta_0^2} \frac{\log x}{x} + \frac{\beta_1^2}{\beta_0^4 x^2} \left( \log^2 x - \log x - 1 + \frac{\beta_2 \beta_0}{\beta_1} \right) \right]$$

•  $x = \log\left(\frac{\mu_R^2}{\Lambda^2}\right)$ 

• A as QCD scale where:  $lpha_s(\mu_R^2=\Lambda^2)\sim$  1,  $\Lambdapprox$  200 MeV

QCD as asymptotically free theory.

#### Event isotropy analysis details

- Proton-proton collisions,  $\sqrt{s} = 13$  TeV, 139 fb<sup>-1</sup>, FullRun2 Dataset, Unfolded data to particle level, CONF-STDM-2022-056
- Anti- $k_T R = 0.4$  calibrated particle-flow jets
  - $N_{jet} \geq 2$
  - *p*<sub>T</sub> > 60 GeV
  - |*y*| < 4.5
  - $H_{T,2} = p_{T,1} + p_{T,2} \ge 400 \text{ GeV}$
- Four inclusive jet multiplicity bins,  $N_{jet} \ge 2, 3, 4, 5$
- Three inclusive  $H_{T,2}$  bins,  $H_{T,2} \ge 500, 1000, 1500$  GeV
- Event Isotropy is unfolded simultaneously in  $N_{jet}$  and  $H_{T,2}$  bins

#### Event isotropy measurement - Energy-Mover's Distance (EMD)



$$\sum_{i=1}^{M} f_{ij} = E'_{j}, \qquad \sum_{j=1}^{M'} f_{ij} = E_{i},$$



| Geometry      | Energy Weight                               | Ground Measure                                                                                           | U                                                      |
|---------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Cylinder      | $w_i^{\text{cyl}} = p_{Ti}/p_{T\text{tot}}$ | $\theta_{ij}^{\text{cyl}} = \frac{12}{\pi^2 + 16y_{\text{max}}^2} \left( y_{ij}^2 + \phi_{ij}^2 \right)$ | $\mathcal{U}_N^{\mathrm{cyl}}( y  < y_{\mathrm{max}})$ |
| Ring          | $w_i^{\rm ring} = p_{Ti}/p_{T{ m tot}}$     | $\theta_{ij}^{\rm ring} = \frac{\pi}{\pi - 2} \left( 1 - \cos \phi_{ij} \right)$                         | $\mathcal{U}_N^{\mathrm{ring}}$                        |
| Ring (Dipole) | $w_i^{\rm ring} = p_{Ti}/p_{T{ m tot}}$     | $\theta_{ij}^{\rm ring} = \frac{1}{1 - \frac{1}{\sqrt{3}}} \left( 1 - \cos \phi_{ij} \right)$            | $\mathcal{U}_2^{\mathrm{ring}}$                        |
|               |                                             |                                                                                                          |                                                        |



#### Event isotropy measurement - Energy-Mover's Distance (EMD)

$$EMD_{\beta}(\mathcal{E}, \mathcal{E}') = \min_{f_{ij} \ge 0} \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij}\theta_{ij}^{\beta},$$
$$\sum_{i=1}^{M} f_{ij} = E'_{j}, \qquad \sum_{j=1}^{M'} f_{ij} = E_{i}, \qquad \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} = \sum_{i=1}^{M} f_{ij} = \sum_{j=1}^{M'} f_{ij} = E_{tot}$$

GeometryEnergy WeightGround Measure
$$\mathcal{U}$$
Cylinder $w_i^{cyl} = p_{Ti}/p_{Ttot}$  $\theta_{ij}^{cyl} = \frac{12}{\pi^{2}+16y_{max}^2} \left(y_{ij}^2 + \phi_{ij}^2\right)$  $\mathcal{U}_N^{cyl}(|y| < y_{max})$ Ring $w_i^{ring} = p_{Ti}/p_{Ttot}$  $\theta_{ij}^{ring} = \frac{\pi}{\pi-2} \left(1 - \cos \phi_{ij}\right)$  $\mathcal{U}_N^{ring}$ Ring (Dipole) $w_i^{ring} = p_{Ti}/p_{Ttot}$  $\theta_{ij}^{ring} = \frac{1}{1 - \frac{1}{\sqrt{3}}} \left(1 - \cos \phi_{ij}\right)$  $\mathcal{U}_2^{ring}$ 

#### Event isotropy measurement - Referenced geometries



# Event isotropy measurement - Correlation for different event isotropy variables



# Event isotropy $1 - I_{\text{Ring}}^{128}$

- Cross-section falls down by 6 order of magnitudes → increased dynamic range
- Different isotropic patterns than for I<sup>2</sup><sub>Ring</sub>
- Very different trends for Powheg+Pythia and Powheg+Herwig than for other MC
- Large differences for Herwig angle-order and dipole shower models
- No differences for Sherpa AHADIC (cluster-based) and Lund (string-based) hadronization models
- Large stat. unc. for high isotropy multijet events
- Dominant sys. unc.
  - JES+JER
  - MC Model



 $1 - I_{\rm Ring}^{128} = 0.83$ 





# Event isotropy $1 - I_{Cyl}^{16}$

do<sup>1</sup> (1-1<sup>14</sup>)

- Unique shape for  $1 I_{Cvl}^{16}$  observable
- Peak position correlated with average number of jets
- No MC describes  $1 I_{Cvl}^{16}$  variable accurately
- Pvthia. Powheg+Pvthia. Powheg+Herwig are consistent and overestimate data at high  $1 - I_{Cvl}^{16}$  values
- No differences for Sherpa AHADIC (cluster-based) and Lund (string-based) hadronization models
- Dominant sys. unc.
  - JES+JER
  - MC Model



 $1 - I_{c_1}^{16} = 0.48$ ATLAS Preliminary • Data Powteo+Pathia -> 500 GeV 10 01 02 03 04 05 05 07 08 09  $\leftarrow$  Forward dijet<sup>\*\*</sup>event on one side of the detector Multijet event covering central and forward region in  $(y \times \phi)$  plane  $\rightarrow$ 

 $1 - I_{Cvl}^{16} = 0.91$ 



$$N_{jet} = 2, \ I_{Ring}^2 = 0.0001$$

#### Event isotropy measurement - Event display 1



Run: 305811 Event: 1126942872 2016-08-08 22:49:14 CEST



$$N_{jet} = 3, \ I_{Ring}^2 = 0.99$$

#### Event isotropy measurement - Event display 2



Run: 359010 Event: 4395980669



$$N_{jet} = 2, \ 1 - I_{Cyl}^{16} = 0.48$$



$$N_{jet} = 3, \ 1 - I_{Cyl}^{16} = 0.91$$



$$N_{jet} = 6, \ 1 - I_{\text{Ring}}^{128} = 0.83$$



$$N_{jet} = 12, \ 1 - I_{\text{Ring}}^{128} = 0.92$$

## Conclusion

ATLAS (A)TEEC measurements:

- Transverse energy-energy correlations and its angular asymmetry (A)TEEC evaluated
- Running  $\alpha_s(Q)$  extracted from TEEC and ATEEC correlations profiting from new NNLO pQCD calculations
- Extracted  $\alpha_s(Q)$  in good agreement with RGE prediction

ATLAS Isotropy measurements:

- Novel isotropy observables allow testing more features of QCD radiation and new insight to MC tuning
- No MC is able to describe all the new isotopy variables