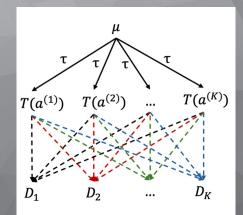
Uncertainty Quantification with Discrepant Data Sets Kirtimaan Mohan – Michigan State University with Mengshi Yan, Tie-Jiun Hou, Zhao Li & C.-P. Yuan

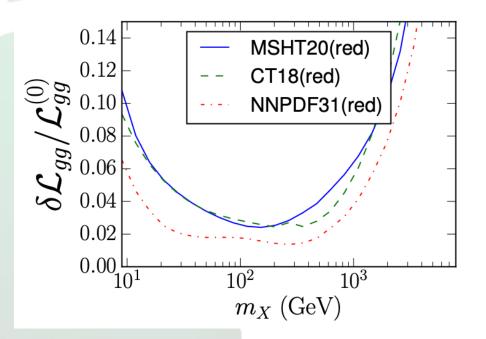
arxiv: 2406.01664

@CTEQ Meeting 2024 – Christopher Newport

Universsity



Differing methodologies lead to different uncertainties among different groups



Opportunity to go back to the drawing board and test our methodologies.

PDFLHC21, arXiv:2203.05506

Motivation

- Precision measurements need precise PDFs
- PDF fitting groups have to contend with tension in data
 - Many strategies to deal with this: For example, the use of tolerance ($\Delta \chi^2 = T^2$)
- PDF fitting groups also have to contend with epistemic uncertainties arising from model choice.
- This talk will describe an implementation of Bayesian Model Averaging (BMA) using the Gaussian Mixture Model (GMM).

Outline

- Simple 1-D toy example with W-boson mass
 - PDG scale factors
 - Bayesian Model Averaging and Information Criteria
- Demonstrate idea with a toy model of PDFs
- Summary

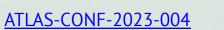
Simple 1-D toy example

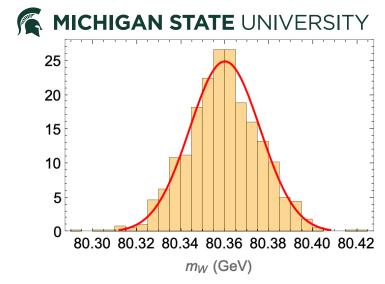
Measuring Mass (Weight) PHY-101 Lab

- Measure mass of W-boson
- Repeat measurement several times
- Minimize log-likelihood or loss function

•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$
•
$$L = \prod_i \frac{e^{\left[\frac{(\mu - x_i)^2}{\sigma_i^2}\right]}}{\sqrt{2\pi\sigma_i}}$$

- Determine best-fit value
 - $m_W = \mu = 80.36 \pm 0.016 \, GeV$

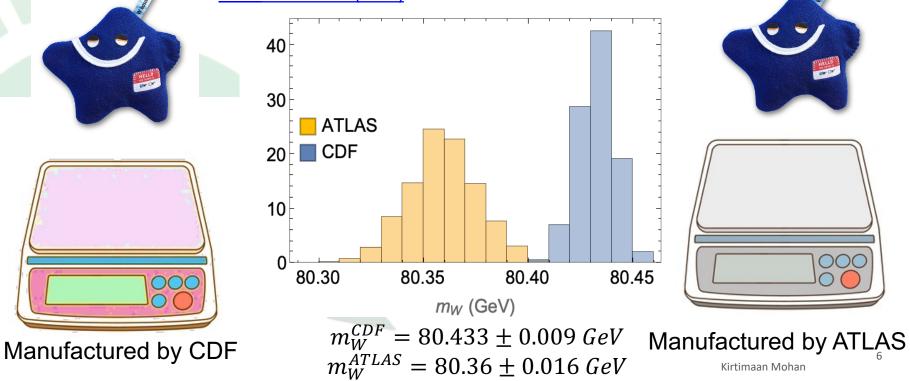




Manufactured by ATLAS

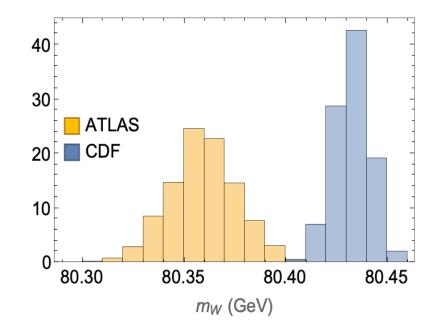
Measuring Mass (Weight) PHY-101 Lab

Repeat measurements with another balance <u>CDF Science 376 (2022)</u>



What should we do in this situation?

- Ideal: Understand why each experiment predicts a different value of mass
 - E.g. Maybe we didn't calibrate our balance properly?
 - Also make measurements with balances manufactured by different companies.
- Less than ideal: Combine the results in a statistically meaningful way that captures our lack of knowledge about the discrepancy – unknown systematics



Measuring Mass (Weight) PHY-101 Lab

- How should we combine these two discrepant measurements to give one value of mass?
- Attempt #1: Let's repeat earlier exercise 40
 - Minimize loss function
 - $\chi^2 = \sum_i \frac{(\mu x_i)^2}{\sigma_i^2}$
 - $m_W = 80.415 \pm 0.011 \, GeV$
- 2σ band does not cover both means
 - How should we interpret this?
- One familiar proposal
 - Increase tolerance $\Delta \chi^2 = T^2$; T > 1
- 30 **ATLAS** CDF 20 Combined 10 80.45 80.30 80.35 80.40 m_{W} (GeV) • Does not provide a faithful representation of the probability distribution of m_W , drawn from our sample of experiments and results in poor goodness of fit 8

PDG proposal – rescale uncertainties by a factor

- If the reduced $\chi^2 < 1$, the results are accepted and there is **no scaling**.
- If the reduced $\chi^2 > 1$, and the experiments are of comparable precision, then all errors are re-scaled by a common factor S, given by

the
$$S_{PDG} = \sqrt{\frac{\chi^2}{N-1}}$$

- If some of the individual errors are much smaller than others, then S_{PDG} is computed from only the most precise experiments. The criterium for these is given with reference to an ad hoc cutoff value.
- This tends to set the $\chi^2 \rightarrow 1$

W boson mass combination

Experiment	W-boson mass	Uncertainty
DO-I [1]	80.483	0.084
CDF-I [2]	80.433	0.079
LEP [3]	80.376	0.033
DO-II [4]	80.375	0.023
LHCB [5]	80.354	0.032
CDF-II [6]	80.4335	0.0094
ATLAS23 [7]	80.36	0.016

$$\overline{m}_W|_{\chi^2} = 80.4065 \pm 0.0072$$

 χ^2 /d.o.f $\simeq 3.3$.

Scale CDF uncertainty from 9.4 MeV to 35~40 MeV gives $\frac{\chi^2}{d.o.f} \sim 1$

 $m_W \sim 80.384 \pm 0.01 \; GeV$

Using goodness of fit to simultaneously evaluate the fit as well as to test model consistency.

BMA can be used to define an alternate measure of consistency

Bayesian Model Averaging

- Formalism

"All models are wrong, some are useful"- George Box

Review of Bayesian Formalism for χ^2

MICHIGAN STATE UNIVERSITY

Data
$$D_i = \langle D_i \rangle + \sigma_i \Delta_i$$
. $\langle f \rangle = (2\pi)^{N_D/2} \int f(\Delta) \prod_{i=1}^{N_D} d\Delta_i \exp\left(-\frac{1}{2}\Delta_i^2\right)$

$$\langle g \rangle = \frac{1}{\sqrt{(2\pi)^{N_D} \det C}} \int g(D) \prod_{i,j=1}^{N_D} dD_i \exp\left(-\frac{1}{2} (D_i - \langle D_i \rangle) (D_j - \langle D_j \rangle) C_{ij}^{-1}\right)$$

$$P(D|T(a)) = \frac{1}{\sqrt{(2\pi)^{N_D} \det C}} dD \exp\left(-\frac{1}{2} \sum_{i,j=1}^{N_D} (D_i - T_i(a))(D_j - T_j(a))C_{ij}^{-1}\right)$$

$$P(T(a)|D) = \frac{P(D|T(a))P(T(a))}{P(D)}$$

See Kovarık, Nadolsky & Soper arXiv:1905.06957

Bayesian Model Averaging

Data from K different experiments $D_i^{(k)} = \langle D_i^{(k)} \rangle + \sigma_i^{(k)} \Delta_i^{(k)} = T_i(a^{(k)}) + \sigma_i^{(k)} \Delta_i^{(k)}$

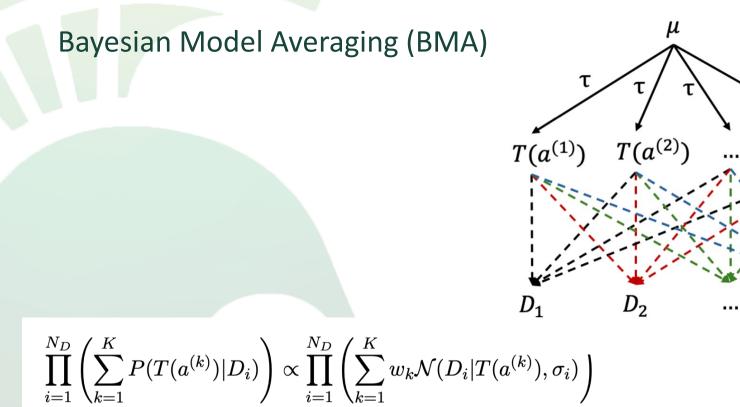
$$P(T(a^{(k)})) = \int d\mu d\tau P(T(a^{(k)})|\mu,\tau) p(\mu,\tau) \equiv w_k \qquad \sum_{k=1}^K w_k = 1.$$

Bayes' Theorem

$$P(D_{i}|T(a^{(k)}))P(T(a^{(k)})) = w_{k}P(D_{i}|T(a^{(k)})) = P(T(a^{(k)})|D_{i})P(D_{i})$$
$$\prod_{i=1}^{N_{D}} \left(\sum_{k=1}^{K} P(T(a^{(k)})|D_{i})\right) \propto \prod_{i=1}^{N_{D}} \left(\sum_{k=1}^{K} w_{k}\mathcal{N}(D_{i}|T(a^{(k)}),\sigma_{i})\right) \text{ Likelihood is a mixture model}$$

 $T(a^{(K)})$

 D_K



Information Criteria

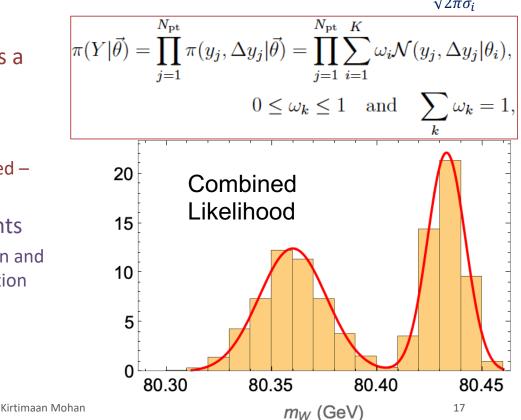
- Given multiple models to explain data we would like to determine which model best fits data
 - This is accomplished by the likelihood
- Many models can have good likelihood, how do we select a model out of many such models?
 - Parsimony/ Occam's razor the simplest models are the ones you want
- How do we determine this balance between parsimony and goodness of fit?
 - Use information Criteria
- Many information criteria exist the most popular being the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) and their variants

Akaike Information Criteria

- Test how similar two probability distributions are: P(D|T) and P(D).
- Several metrics for measuring the difference between probability distributions, Kullback–Leibler divergence is one of them
- $D_{KL}(P(D|T)||P(D)) = \int dD P(D) \log \frac{P(D|T)}{P(D)}$
- This can be determined asymptotically and leads to the AIC
- AIC = $-2\log(P(D|T)) + 2N_{parm}$
- The smallest value of AIC is a measure of the balance between goodness of fit and model complexity

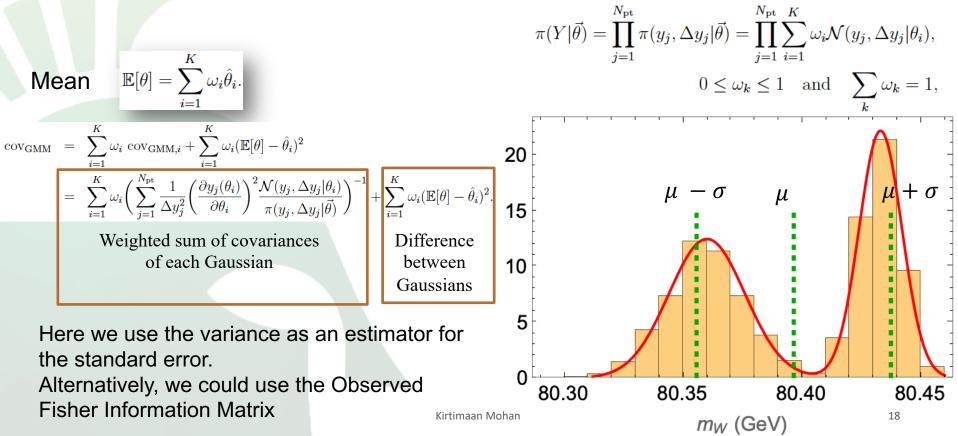
Gaussian Mixture Model for BMA

- Start by parameterizing the likelihood as a sum of Gaussians
- In this simple example we know there are two Gaussians, i.e. K= 2
- In general, the value of K needs to be determined discussed later
- Introduced a new parameter ω_k weights
- Constraints on ω_k ; ensures proper normalization and interpretation as a probability distribution function
- For simplicity we'll use equal weights here
- In reality it is an additional fit parameter
- See Interpretation in Bayesian formalism later.

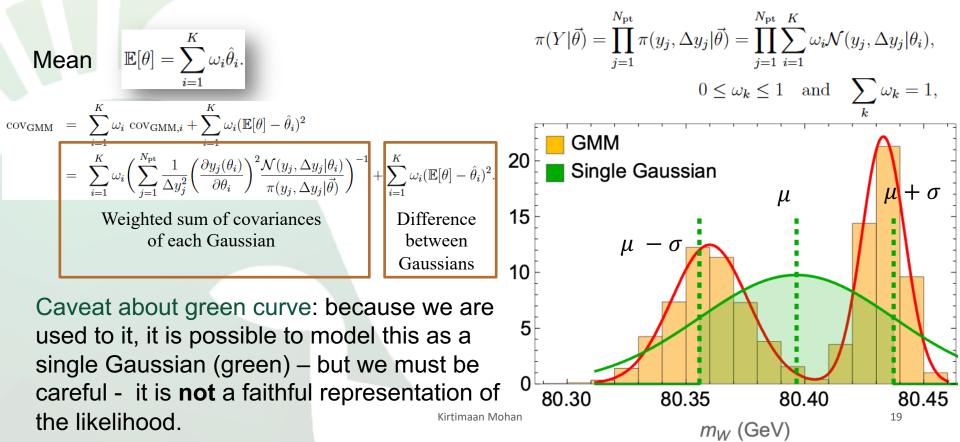


MICHIGAN STATE UNIVERSITY

Determine mean and variance for GMM

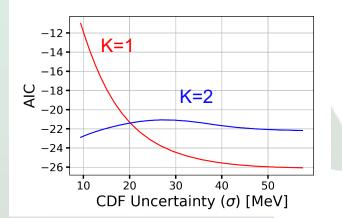


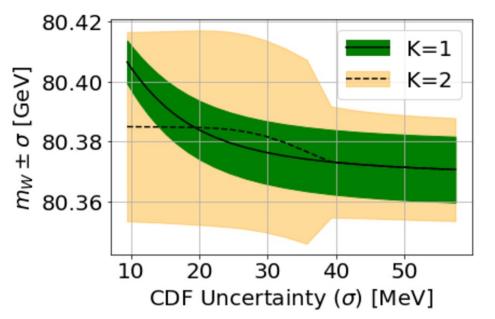
Determine mean and variance for GMM



W boson mass combination

Experiment	W-boson mass	Uncertainty
DO-I [1]	80.483	0.084
CDF-I [2]	80.433	0.079
LEP [3]	80.376	0.033
DO-II [4]	80.375	0.023
LHCB [5]	80.354	0.032
CDF-II [6]	80.4335	0.0094
ATLAS23 [7]	80.36	0.016





AIC: Setting CDF uncertainty to ~ 20 MeV makes data consistent, i.e. K=1 is favored.

Kirtimaan Mohan

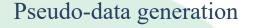
Application of GMM and BMA to a toy model of PDFs

>1 parameter fits

A toy model of PDFs with inconsistent data

"truth"
$$g(x) = a_0 x^{a_1} (1-x)^{a_2} e^{xa_3} (1+xe^{a_4})^{a_5}$$

Parameters of model: $\{a_0, a_1, a_2, a_3, a_4, a_5\}$



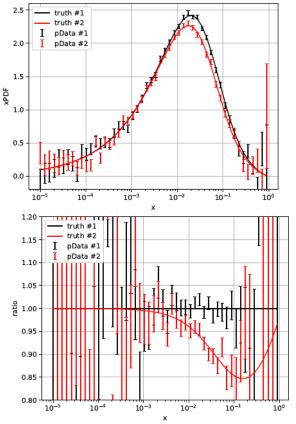
Central value $g_D(x) = (1 + r \times \Delta g(x))g(x)$

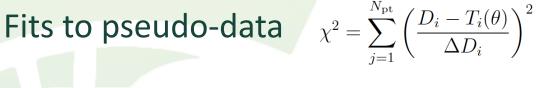
Uncertainty

	••••						
	$N_{\rm pt}$	a_0	a_1	a_2	a_3	a_4	a_5
pseudo-data #1	50	30	0.5	2.4	4.3	2.4	-3.0
pseudo-data #1 pseudo-data #2	50	30	0.5	2.4	4.3	2.6	-2.8

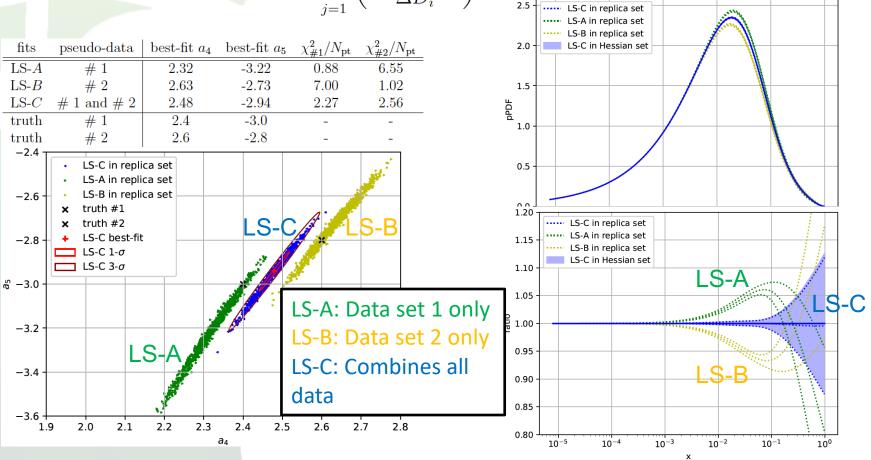
Inconsistent Pseudo-data generated by starting with different values of $a_4 \& a_5$

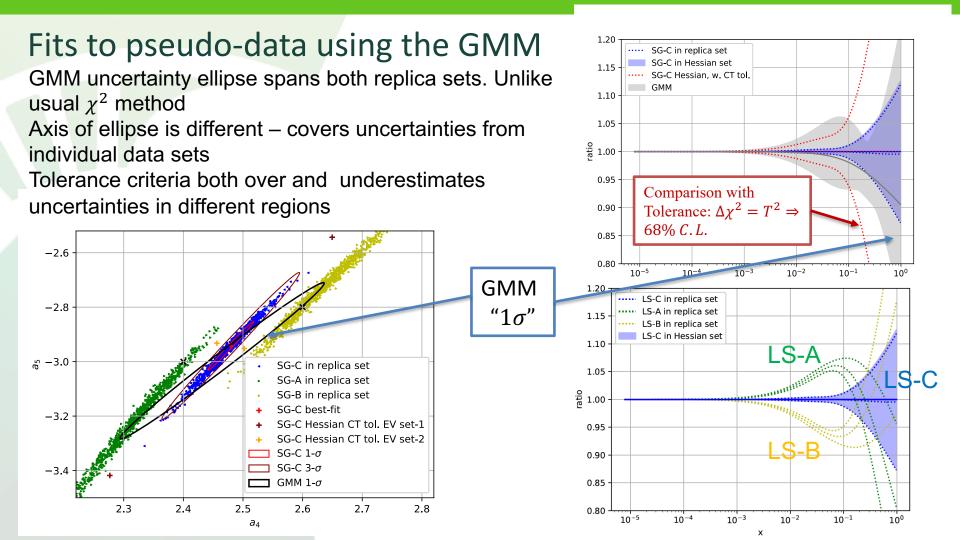
 $\Delta g(x) = \frac{\alpha}{\sqrt{a(x)}}$



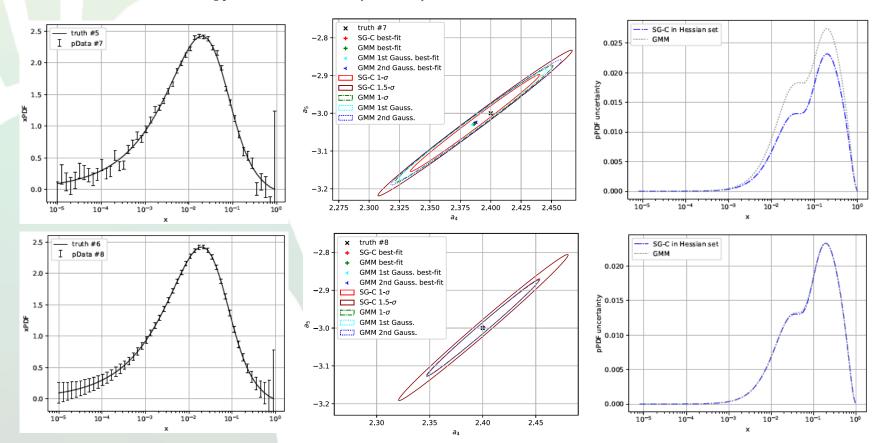


MICHIGAN STATE UNIVERSITY





GMM reduces to the χ^2 likelihood (K= 1), when data is consistent



How many Gaussians? How do we determine K?

				K = 1	K = 2	K = 3	K = 4
Akaike Information Criterion (AIC)	Strong tension	case-1	AIC	-102.2	-203.6	-194.9	-187.9
<u>(Akaike, 1974)</u>			BIC	-106.1	-211.2	-206.4	-203.2
Bayesian Information Criterion (BIC)		$N_{\rm pt}{=}100$	$-\mathrm{log}L$	-55.0	-109.6	-109.2	-109.6
<u>Schwarz (Ann Stat 1978, 6:461–464)</u>	Weak tension due to large uncertainty	case-2	AIC	-21.2	-15.4	-7.9	-0.2
			BIC	-25.0	-23.0	-19.3	-15.5
		$N_{\rm pt} = 100$	$-\log L$	-14.5	-15.5	-15.7	-15.7
	Consistent but data fluctuated Consistent - No fluctuation	case-3	AIC	-219.3	-220.2	-212.8	-205.0
AIC = $N_{\text{parm}} \log N_{\text{pt}} - 2\log L \Big _{\theta = \hat{\theta}}$,			BIC	-223.2	-227.8	-224.3	-220.3
BIC = $2N_{\text{parm}} - 2\log L _{\theta=\hat{\theta}}$. $N_{\text{parm}} = 2K + (K - 1).$		$N_{\rm pt} = 100$	$-\log L$	-113.6	-117.9	-117.9	-118.1
		case-4	AIC	-117.8	-109.9	-102.1	-94.3
			BIC	-121.6	-117.6	-113.6	-109.6
		$N_{\rm pt} = 50$	$-\mathrm{log}L$	-62.8	-62.8	-62.8	-62.8
		case-5	AIC	-169.3	-161.5	-153.6	-145.8
			BIC	-173.1	-169.1	-165.1	-161.1
Use the lowest values of AIC &		$N_{\rm pt} = 50$	$-\log L$	-88.6	-88.6	-88.6	-88.6
		$N_{ m pt}$		$N_{\rm pt}$ K			
BIC to determine the best value of $\pi(Y \vec{\theta}) = \prod_{i=1}^{p} \pi(y_i, \Delta y_j \vec{\theta}) = \prod_{i=1}^{p} \sum_{j=1}^{n} \omega_i \mathcal{N}(y_j, \Delta y_j \theta_i),$							
K and avoids over-fitting. $ \begin{array}{c} \text{K and avoids over-fitting.} \\ 0 \leq \omega_k \leq 1 \text{and} \sum \omega_k = 1, \end{array} $,
							L,
					1	k	

MICHIGAN STATE UNIVERSITY

Summary & Outlook

- Showed how to repurpose the GMM, a well-known machine learning classification tool, as a statistical model to estimate uncertainty in PDF fits
 - Can also be used to classify PDF fitting data and find tensions in data sets unsupervised machine learning task
- Provides an implementation of Bayesian Model Averaging, to provide statistically robust estimates of uncertainty.
- Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF uncertainty estimation
 - Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn
- Here I only showed tension due to experimental inconsistencies, but this also applies to tension resulting from imprecise theoretical predictions.
- Can be used to determine a value of Tolerance in order to connect with existing prescriptions.
- Next steps: Apply to real data and pdf fit.