

Fast NNLO Implementation of the approximate ACOT scheme for DIS

CTEQ Fall Meeting – Christopher Newport University

Peter Risse

soon to be published, preliminary results: 2307.08269 (DIS23 Proceedings)

Contents

Overview: Heavy Quark schemes in DIS

need for heavy quark contributions

General Mass Variable Flavor Number Schemes

The approximate SACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Numerical implementation	
► APFEL++	► results

Contents

Overview: Heavy Quark schemes in DIS

need for heavy quark contributions

General Mass Variable Flavor Number Schemes

The approximate SACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Numerical implementation	
► APFEL++	results

Introduction to heavy quark schemes in DIS

Factorization in DIS structure functions

$$F_{\lambda}(x,Q^2) = \sum_{k} C_k^{\lambda} \otimes f_k = \sum_{k} \int_x^1 \frac{\mathrm{d}\xi}{\xi} C_k^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{M_i}{\mu}, \alpha_s(\mu)\right) f_k(\xi, \mu)$$

Introduction to heavy quark schemes in DIS

Factorization in DIS structure functions

$$F_{\lambda}(x,Q^2) = \sum_{k} C_k^{\lambda} \otimes f_k = \sum_{k} \int_x^1 \frac{\mathrm{d}\xi}{\xi} C_k^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{M_i}{\mu}, \alpha_s(\mu)\right) f_k(\xi, \mu)$$

- ▶ Wilson coefficients have a complicated α_s expansion
 - these are the hard scattering amplitudes
- **b** heavy quark mass effects sizable at $Q \sim M_H$
- extremely important for global PDF fits
 - bulk of experimental data from DIS
 - need fast theory predictions
- older implementations too slow to be applicable

Zero Mass Variable Flavor Number Scheme (ZM-VFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account

Zero Mass Variable Flavor Number Scheme (ZM-VFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account

 \blacktriangleright simple but works best far from threshold $Q \gg M_{\rm H}$

Zero Mass Variable Flavor Number Scheme (ZM-VFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account

 \blacktriangleright simple but works best far from threshold $Q \gg M_{\rm H}$

Fixed Flavor Number Scheme (FFNS)

- \blacktriangleright treat all quarks as massless except for the heaviest M_H
- this mass appears explicitly in the Wilson coefficients

Zero Mass Variable Flavor Number Scheme (ZM-VFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account

 \blacktriangleright simple but works best far from threshold $Q \gg M_{\rm H}$

Fixed Flavor Number Scheme (FFNS)

- \blacktriangleright treat all quarks as massless except for the heaviest M_H
- this mass appears explicitly in the Wilson coefficients

 \blacktriangleright good results for $Q \sim M_{\rm H}$ unreliable as ${\it Q}$ becomes large

General Mass Variable Flavor Number Schemes (GM-VFNS)

 'interpolating' between FFNS and ZM-VFNS

General Mass Variable Flavor Number Schemes (GM-VFNS)

- 'interpolating' between FFNS and ZM-VFNS
- several choices can be made, resulting in different schemes:
 - ► ACOT: minimal extension of the MS renormalisation scheme
 - FONLL: interpolating between schemes with a damping function
 - ► **TR-method**: requiring smooth transition at *Q* = *M*_{*H*}

T. Stavreva et al., arXiv: 1203.0282

Contents

Overview: Heavy Quark schemes in DIS

need for heavy quark contributions

General Mass Variable Flavor Number Schemes

The approximate SACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Numerical implementation	
► APFEL++	results

The aSACOT- χ scheme

Stavreva et al, arXiv:1203.0282

The aSACOT- χ scheme

Stavreva et al, arXiv:1203.0282

The aSACOT- χ scheme

Stavreva et al, arXiv:1203.0282

aSACOT- χ : Dissection into flavor contributions at NNLO

aSACOT- χ : Dissection into flavor contributions at NNLO

aSACOT- χ : Dissection into flavor contributions at NNLO (NEW)

aSACOT- χ : NNLO gluon contribution

Neutral current

filter out the individual quark flavor contributions

• apply $\chi(n)$ -prescription to coefficient

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{nM_j}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

repeat for all flavors

aSACOT- χ : NNLO gluon contribution

Charged current (NEW)

- filter out the individual quark flavor contributions
 - \blacktriangleright take care of the flavor change at the W^\pm vertex
- apply $\chi(n)$ -prescription to coefficient

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{n M_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

• use heaviest quark mass: $M_H = \max(M_j, M_k)$

repeat for all flavors

aSACOT- χ : NNLO non-singlet contribution (NEW)

aSACOT- χ : NNLO non-singlet contribution (NEW)

filter out the individual quark flavor contributions

 \blacktriangleright take care of the flavor change at the W^\pm vertex

note that we have three flavors now

• apply $\chi(n)$ -prescription to coefficient

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{n M_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

• use heaviest quark mass: $M_H = \max(M_i, M_j, M_k)$

repeat for all flavors

both incoming and outgoing flavors

aSACOT- χ : NNLO purely singlet contribution (NEW)

Purely singlet contribution

$$F_{a,q_i} \simeq C_{a,q}^{\mathbf{PS}} \otimes \langle \hat{e}^2 \rangle (q_i + \bar{q}_i)$$

"the EW-boson does not couple to the incoming quark"

- filter out the individual quark flavor contributions
 - \blacktriangleright take care of the flavor change at the W^\pm vertex
 - note that we have three flavors now
- apply $\chi(n)$ -prescription to coefficient
 - $\blacktriangleright \chi(n) = x \left[1 + \left(\frac{n M_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$
 - use heaviest quark mass: $M_H = \max(M_i, M_j, M_k)$
- repeat for all flavors
 - both incoming and outgoing flavors

Contents

Overview: Heavy Quark schemes in DIS

need for heavy quark contributions

General Mass Variable Flavor Number Schemes

The approximate SACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Bertone, arXiv:1708.00911

▶ main author: V. Bertone

Bertone, arXiv:1708.00911

▶ main author: V. Bertone

$$F_{\lambda}(x,Q^2) = \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_k^{\lambda}\left(\frac{\chi}{\xi},\frac{Q}{\mu},\frac{M_i}{\mu},\alpha_s(\mu)\right) f_k(\xi,\mu)$$

Bertone, arXiv:1708.00911

► main author: V. Bertone

Precompute observables

$$F_{\lambda}(x,Q^{2}) = \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_{k}^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{M_{i}}{\mu}, \alpha_{s}(\mu)\right) f_{k}(\xi, \mu)$$
Replace with interpolating functions: \uparrow

$$\sum_{\alpha}^{N_{\xi}} w_{\alpha}(\xi) f_k(\xi_{\alpha}, \mu)$$

Bertone, arXiv:1708.00911

► main author: V. Bertone

Precompute observables

$$F_{\lambda}(x,Q^2) = \sum_{k} \sum_{\alpha} \underbrace{\int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_{k}^{\lambda}\left(\frac{\chi}{\xi},\frac{Q}{mu},\frac{M_{i}}{\mu},\alpha_{s}(\mu)\right) w_{\alpha}(\xi)}_{\mathbf{Precompute}} f_{k}(\xi_{\alpha},\mu)$$

 $\Rightarrow F_{\lambda}(x,Q^2)$ as a function of the PDFs without the need for repeating the integration!

Available schemes in APFEL++

scheme	$\mathcal{O}(lpha_s)$	NC: F_2	NC: F_3	NC: F_L	$\mathbf{CC}:$ F_2	СС: <i>F</i> ₃	$\mathbf{CC}:$ F_L
ZM	N2LO	1	1	1	1	1	1
FONLL-C	N2LO	1	×	1	×	×	×
ACOT	NLO	×	×	×	×	×	×
sACOT- χ	NLO	×	×	×	×	×	×
approx. sACOT- χ	N2LO	×	×	×	×	×	×

Available schemes in APFEL++ (NEW)

scheme	$\mathcal{O}(lpha_s)$	NC: F ₂	NC: F_3	NC: F_L	$\mathbf{CC}:$ F_2	сс: <i>F</i> ₃	f cc: F_L
ZM	N2LO	1	1	1	1	1	1
FONLL-C	N2LO	1	×	1	×	×	×
АСОТ	NLO	 Image: A second s	1	1	×	×	×
sACOT- χ	NLO	1	1	1	1	1	1
approx. sACOT- χ	N2LO	1	1	1	1	1	1

Results: Mass effects at NNLO for F_2

 $F_2(W^+)$: SACOT- $\chi(n=1)/\text{ZM}$ only NNLO

NuTeV predictions: NNLO over NLO comparison

Extension of SACOT- χ to charged current

- using ZM-coefficients at NNLO
- dominant mass effects taken into account

Extension of SACOT- χ to charged current

- using ZM-coefficients at NNLO
- dominant mass effects taken into account
- available now for all 9 structure functions

Extension of SACOT- χ to charged current

- using ZM-coefficients at NNLO
- dominant mass effects taken into account
- available now for all 9 structure functions

Numerical results

- ► fast implementation in APFEL++
 - suitable for PDF extractions
- publicly available!

Extension of SACOT- χ to charged current

- using ZM-coefficients at NNLO
- dominant mass effects taken into account
- available now for all 9 structure functions

Numerical results

- ► fast implementation in APFEL++
 - suitable for PDF extractions
- publicly available!
- ▶ significant impact on ν -DIS data

Extension of SACOT- χ to charged current

- using ZM-coefficients at NNLO
- dominant mass effects taken into account
- available now for all 9 structure functions

Numerical results

- ► fast implementation in APFEL++
 - suitable for PDF extractions
- publicly available!
- ▶ significant impact on ν -DIS data

Thank you for your intention!

backup

ACOT at NLO

Aivazis et al. arXiv:9312318 and arXiv:9312319

LO quark-boson scattering + NLO gluon-boson scattering

subtraction term

ACOT at NLO

Aivazis et al, arXiv:9312318 and arXiv:9312319

LO quark-boson scattering

+ NLO gluon-boson scattering

- subtraction term

ACOT at NLO

Aivazis et al, arXiv:9312318 and arXiv:9312319

LO quark-boson scattering

+ NLO gluon-boson scattering

subtraction term

