DOE contracts: DE-SC0007981 DE-AC05-06OR

Collins—Soper kernel from collinear factorization

Matteo Cerutti

A. Accardi, MC, C. Costa, A. Signori, A. Simonelli

CTEQ Fall Meeting 2024 November 21, 2024

Understand the behaviour of PDFs in the large-x region

- d/u ratio as a tool for investigating confinement \bigcirc
- Theoretical constraints (positivity bounds) \overline{O}

Understand the behaviour of PDFs in the large-x region

- Beyond-Standard-Model searches \bigcirc
- Forward facilities (LHC) \bigcirc

Motivations

Understand the behaviour of PDFs in the large-x region

Past Literature (resummation)

QCD

Summation of Large Corrections to Short Distance Cross-Sections *Sterman (1986)*

Resummation of the QCD Perturbative Series *Catani, Trentadue (1989)*

SCET

Factorization and Momentum-Space Resummation in DIS *Becher, Neubert, Pecjak (2007)*

Rapidity Divergences and DIS in the Endpoint Region *Fleming, Labun (2012)*

Proper factorization in high-energy scattering near the endpoint *Chay, Kim (2013)*

Is there a final answer?

QCD
$$
F(x, Q^2) = |H_{DI}(Q^2)|^2 \int_x^1 (dy/y) \phi(y, Q^2) \int_0^{y-x} (dw/[1-w]) \frac{V(wQ)}{w}
$$

\n
$$
\times J[Q^2(y-x-w)/2x, Q] + O(1-x)^0.
$$
 (3.13)

SCET
$$
F_2^{\text{ns}}(x, Q^2) = \sum_q e_q^2 |C_V(Q^2, \mu)|^2 Q^2 \int_x^1 d\xi J(Q^2 \frac{\xi - x}{x}, \mu) \phi_q^{\text{ns}}(\xi, \mu)
$$

Issues with rapidity divergences

"[the rapidity anomalous dimensions] reveal sensitivity to IR scales which *may signal a breakdown of factorization*"

Fleming, Labun (2012)

We need a careful treatment of rapidity divergences

7

Kinematics and Dynamics at large

The process has 2 natural scales: W^2 and Q^2

The final state becomes more and more jet-like as x increases

the completeness relation cannot be used anymore the spread of transverse momentum is limited

Kinematics and Dynamics at large

Peculiar case: neither inclusive nor semi-inclusive

The process has 2 dominant light-cone (opposite) directions

same as SIDIS in TMD factorization

off-lightcone factorization

Why do we want to go off the light cone?

- **1. Gauge-invariance** is preserved
- **2. Soft exponentiation** is preserved
- 3. Explicit **tracking of the rapidity effects** that may break factorization

Their cancellation

- *is not guaranteed a priori*
- *often happens at the cross section level*

The calculation of the diagrams appears to be more complicated

Wilson lines are tilted off the light cone

$$
n = (1, 0, \vec{0}_T) \quad \mapsto \quad n_1 = (1, -e^{-2y_1}, \vec{0}_T),
$$

$$
\overline{n} = (0, 1, \vec{0}_T) \quad \mapsto \quad n_2 = (e^{2y_2}, 1, \vec{0}_T).
$$

Subtracting the regions of overlap

off-lightcone target function

Factorization theorem (off-lightcone)

$$
x W^{\mu\nu} = N_C \mathbf{u}^{\mu\nu} H(Q^2) \sum_i \int_x^1 \frac{d\xi}{\xi} \int_0^{\xi - x} d\rho
$$

$$
\times \phi_i^{\text{thr}}(\xi, y_1) \left[S\left(\frac{\rho}{\xi}; y_1, y_2\right) \right] \mathcal{J}_i^{\text{thr}}\left(\frac{\xi - x - \rho}{x}; y_2\right)
$$

 y_1 : large and positive y_2 : large and negative

The soft function appears naturally It bridges the rapidity gaps of the target and the jet Same result as Sterman (1986)

Soft function in Mellin space

Factorization theorem (1)

$$
\begin{array}{l}W^{\mu\nu}=N_C\,\mathbf{u}^{\mu\nu}\,H(\mu,Q)\,\sum_j\int_0^1dx x^{N-1}\\ \\ \times\,\widehat{\phi}_j^{\mathrm{thr}}(N,\mu,y_0)e^{\int_{\bar{y}_0}^{y_0}dy\,K(a_S(\mu),L_N+y)}\,\widehat{\mathcal{J}}_j^{\mathrm{thr}}(N,\mu,\bar{y}_0)\end{array}
$$

CS kernel EXPLICIT in inclusive DIS cross section

Off-lightcone effects (P functions) cancel at the cross section level

Off-lightcone effect still present at the operator level

 \Rightarrow Complicated evolution equations

It is possible to cancel P functions at the operator level

$$
\widehat{\phi}^{\text{thr}}(N,\mu,y_0)e^{\int_{\bar{y}_0}^{y_0}dy\,K(a_S,L_N+y)}\widehat{\mathcal{J}}^{\text{thr}}(N,\mu,\overline{y}_0)=\widehat{\phi}^{\text{sqrt}}(N,\mu,y_n)\widehat{\mathcal{J}}^{\text{sqrt}}(N,\mu,y_n)
$$

Factorization theorem (2)

Same result as SCET — but all factorization issues are now resolved CS kernel IMPLICIT in inclusive DIS cross section

Factorization theorem (1)

$$
\begin{aligned} W^{\mu\nu} &= N_C\, \mathbf{u}^{\mu\nu}\, H(\mu,Q)\, \sum_j \int_0^1 dx x^{N-1} \\ &\times \widehat{\phi}_j^{\mathrm{thr}}(N,\mu,y_0)e^{\int_{\bar{y}_0}^{y_0} dy\, K(a_S(\mu),L_N+y)}\, \widehat{\mathcal{J}}_j^{\mathrm{thr}}(N,\mu,\bar{y}_0) \end{aligned}
$$

Factorization theorem (2)

$$
W^{\mu\nu} = N_C \, \mathbf{u}^{\mu\nu} \, H(\mu,Q) \, \sum_j \, \int_0^1 dx x^{N-1} \;\widehat{f}_j(N,\mu) \, \widehat{J}_j(N;\mu),
$$

Rapidity evolution of target/jet operator

$$
\frac{\partial}{\partial y_n}\text{log}\, \widehat{\mathcal{J}}^{\text{ sqrt}}(N,\mu,y_n) = +K(a_S(\mu),L_N+y_n),\\ \frac{\partial}{\partial y_n}\text{log}\, \widehat{\phi}^{\text{ sqrt}}(N,\mu,y_n) = -K(a_S(\mu),L_N+y_n).
$$

New way for accessing the CS kernel a typical TMD object

Bollweg, et al., PLB 852 (2024)