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Inclusive DIS at the endpoint region




Motivations

Understand the behaviour of PDFs in the large-x region

O d/uratio as a tool for investigating confinement

O Theoretical constraints (positivity bounds)
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Understand the behaviour of PDFs in the large-x region

O Beyond-Standard-Model searches

O Forward facilities (LHC)
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Motivations

Understand the behaviour of PDFs in the large-x region

O High-precision data from Jefferson Lab - This Work
E00-116 (JLab 6 GeV)
SLAC (Whitlow)
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Past Literature (resummation)

QCD

Summation of Large Corrections to Short Distance Cross-Sections Sterman (1986)

Resummation of the QCD Perturbative Series Catani, Trentadue (1989)

SCET

Factorization and Momentum-Space Resummation in DIS Becher, Neubert, Pecjak (2007)
Rapidity Divergences and DIS in the Endpoint Region Fleming, Labun (2012)

Proper factorization in high-energy scattering near the endpoint chay, Kim (2013)

Is there a final answer?



Role of Soft Function

Soft Function

QCD F(x,0%) =|Hur(0%) ' ['(ay/»)8(3 @) [ (aw/[1 -]

and in SCET?

Sterman (1986) b
xJ[Q*(y-x—-w)/2x,0] +O(1 - x)°. (3.13)
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Issues with rapidity divergences

“[the rapidity anomalous dimensions] reveal sensitivity to IR scales
which may signal a breakdown of factorization”

Fleming, Labun (2012)

We need a careful treatment of rapidity divergences



Kinematics and Dynamies at large x

1l —=x B
Kinematic limit on invariant mass W2 — Q 2 -+ M 2
I B
e
q
e aligned with
q s <7 scattered quark
r — 1 \
P p<Wis0 | > )R] # 1

when p? < W?

The process has 2 natural scales: W2 and Q :

The final state becomes more and more jet-like as x increases
the completeness relation cannot be used anymore

the spread of transverse momentum is limited



Kinematics and Dynamies at large x

1l —=x B
Kinematic limit on invariant mass W2 — Q 2 —+ M 2
LB

e

= - — direction o

q . > End-point jet
r— 1
3 —> Target remnant
P p}zl <W?=50 .+ direction

| p

Peculiar case: neither inclusive nor semi-inclusive

The process has 2 dominant light-cone (opposite) directions

same as SIDIS in TMD factorization

off-lightcone factorization



Off-lightcone collinear factorization

Why do we want to go off the light cone?

Cons

1. The calculation of the
diagrams appears to be
more complicated

Pros

1. Gauge-invariance is
preserved

2. Soft exponentiation is
preserved

3. Explicit tracking of the
rapidity effects that may
break factorization

Their cancellation

O is not guaranteed a priori

O often happens at the cross section level
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Off-lightcone collinear factorization

Wilson lines are tilted off the light cone

11



Off-lightcone collinear factorization

Subtracting the regions of overlap

off-lightcone jet function
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off-lightcone target function
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Off-lightcone collinear factorization

Factorization theorem (off-lightcone)

xWH = Nou H(Q?) Z/l % /ﬁ—mdp
i x 0

X ¢ (€, v1) S(g;yl,yz) J,;thf(g_ z — p;yz)

y1: large and positive y,: large and negative

The soft function appears naturally
It bridges the rapidity gaps of the target and the jet

Same result as Sterman (1986)
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Off-lightcone collinear factorization

Mellin space
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Off-lightcone collinear factorization

Soft function in Mellin space

x —» 1 & N asymptote

K-P decomposition

The soft function is the vacuum
expectation value of this Wilson loop

SDIQ(N,N,yl,?jz) — e :5/21+i% dylK (as(u),Ln+y) %[P(G.S(}L),LN-f-yl+i%)+P(as(“),LN+y2)]+O(c—2y1’c2y2)

) CS Kernel

Ly = log (\/§MP+ Ne'®

community

log of the displacement [

K and P are the truly universal functions "
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Off-lightcone collinear factorization

Factorization theorem (1)

1
W = Neu"” H(u, Q) Z / dxz™ !
j 0

“T Y0 a 7 o —
X B (N, iy yo)eln W KOSWILED) Fihe (N 1y, )

CS kernel EXPLICIT in inclusive DIS cross section
Off-lightcone effects (P functions) cancel at the cross section level

Yo,y arbitrary rapidity scales
natural symmetric choice Yo

yo — _LN

1
4+
c~

=

Clear and transparent rapidity separation
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Off-lightcone collinear factorization

Off-lightcone effect still present at the operator level

= Complicated evolution equations

It is possible to cancel P functions at the operator level

Square-root definitions

community

R T S(Yn, 3
T (ya) = lim Jm(yl)\l - fy Ayf)
f1++00 S (@1, 92)S(F1, Yn)

‘93+OO

0

5 log 7 **(N, t, yn) = +K (as(u), Ly + yn),
n

O ~
_logd)sqrt(Na Hy yn) - —K(aS(ﬂ)a Ly + yn)-

n

Very simple evolution equations

~ 9 dy K (ag,Ly+y) 5 _ ~ =
SU(IN, 1, yo)eln WE@SINY) Fehr( Ny 2y =GN, 1 yn) TN, 1, yn)
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Off-lightcone collinear factorization

Factorization theorem (2)

Yo, Y, arbitrary rapidity scales
lucky choice Vo = —Ly
?O = —Ly
Soft physics in the target operator
Matching to the (standard) light-cone operators

T™ (N, p, —Ly) = Clas(n), Ly) Ji(N; p),
__ LWm
C(aS(ﬂ')’ LN) .

1
W = Now H(u,Q) - [ daa™ .0 i,
J

Same result as SCET — but all factorization issues are now resolved
CS kernel IMPLICIT in inclusive DIS cross section
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TAKE-HOME message

Factorization theorem (1)

1
WH = Neu* H(u,Q) Z / dxz™N 1
j 0

community

T Y0 a r p— —
X ¢§hr(Na M, yO)efﬁo dy Klas(u),Lu+) j_.jthr(N$ H, yO)

Factorization theorem (2)

1
W = Now” H(i,Q) 3 fo daw™ 1 TV, 0) TN ),
J

Rapidity evolution of target/jet operator ——NLL HSO24 MWW ART23 & GI
I ZZ1aswWz24 s IFY23 s MAP22 & CG
0 7 sqr
3 log J *F(N, pt, yn) = +K(as(u), Ly + yn),
[
b .
log d’ sqrt(N, Hy yn) - —K(aS(#), Ly + yn)-
OYn
New way for accessing the CS kernel
. . -2 - - ' '
a typical TMD object 0.2 0.4 0.6 0.8
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Bollweg, et al., PLB 852 (2024)



