Measurements of α_s with $JLab@22$ GeV

A. Deur Jefferson Lab

- Measurement of $\alpha_s(M_z^2)$
- Mapping of $\alpha_s(Q^2)$ for $1 < Q^2 < 22 \text{ GeV}^2$

Measurements of α_s with $JLab@22$ GeV

A. Deur Jefferson Lab

- $\alpha_s(M_z^2)$
- Mapping of $\alpha_s(Q^2)$ for $1 < Q^2 < 22 \text{ GeV}^2$

Many possible methods to measure α_{s} . Here: using the Bjorken sum rule, without implication on what is the most accurate way. • Measurement of $\alpha_s(M_z^2)$ Many possible methods to measure α_s

Importance of measuring $\alpha_{s}(M_{z})$

• α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$

•Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine α_s .

⇒ Strategy: combine many independent measurements with larger uncertainties.

Currently, best individual experimental determinations are \sim 1%-2% level.

• α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$

•Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine α_s .

⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.

• Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 - \frac{\alpha_s}{\pi}\right]$ $\frac{3}{\pi}$ ¹¹ ∴ $\frac{1}{\pi}$

> Details given in talk at JLab@22 GeV Workshop, Jan. 2024. See also back-up slides

• α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$

•Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine α_s .

⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.

• Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 - \frac{\alpha_s}{\pi}\right]$ $\frac{3}{\pi}$ ¹¹ ∴ $\frac{1}{\pi}$

)

Main issue with sum rules: Unmeasured low-x part: integrant dx. from -dependence ⇒ strongest sensitivity. *x*=0 needs infinite energy or 0° scattering Q *Q* α *z* Q *a ass ass ass as a* *Q*² *α^s* Unmeasured low-*x* part: \int_{0}^{∞} integrant *dx*. 1 0 integrant *d x*

Measuring *αs*(*Mz*)

• α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$ •Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271) •No "silver bullet" experiment can exquisitely determine α_s . ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level. •<u>Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV</u> with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1-\frac{\alpha_s}{\pi}\right]$ $\sum_{n=1}^{\infty}$ $\frac{1}{\sqrt{2}}$ $\sum_{n=2}^{\infty}$ *CLAS EG1dvcs* (< 6GeV)
Expected EG12 (JLab < 11 GeV) Main issue with sum rules: Unmeasured low-*x* part: \int_0^1 integrant dx. $\sum_{n=0}^{\infty}$ \int_{0}^1 \int_{0}^1 *Estimate EIC* f^0 and g^0 strongest sensitivity. *x*=0 needs infinite energy or 0° scat. $U.173$ Drawback of sum rules: integrals cannot be measured down to *x*=0: missing low-*x* issue. $\begin{CD} 0.15\end{CD}$ and $\begin{CD} 0.15\end{CD}$ Ω inclusive data obtained concurrently with exclusive data more demanding in statistical more demonstrative data more demo $\frac{1}{\sqrt{1}}$ and $\frac{1}{\sqrt{1}}$ Expected EIC data complement JLab data; Ω Ω z $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\mathbb{E}[\mathbf{S}^{\text{max}}] = \mathbf{S}^{\text{max}}$ \overline{a} \overline{a} uncertainty of \overline{a} One extraction from Lab@22 GeV can yield with greater accuracy than world data combined. It is just one possibility to λ efferson Lab θ $\frac{3}{\pi}$ ¹¹ ∴ $\frac{1}{\pi}$ *Q*₂ *CLAS EGI*
*F*_{*n*nected F} *Q*² *α^s* $\sum_{p \in \mathbb{Z}} \frac{1}{p^p}$ **Cat.** $\begin{bmatrix} 0.15 \\ 1 \end{bmatrix}$ Δ*αs*/*α^s* ≃ 6.1 × 10−³ Δ*αs*/*α^s* ≳ 1.5 % *0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 Bjorken Sum Expected JLab (< 22 GeV) Full sum Full sumCLAS EG1dvcs (< 6GeV) 0.10.1250.175* 0.225
 $\frac{1}{\sqrt{2}}$ Expected *JLab* (< 22 *GeV*)

0.275

0.175

0.0 *Estimate EIC* 1 0 integrant *d x*

¹ ¹⁰ Q²

 (GeV^2)

rson National Accelerator Facili[.]

ring the Nature of Matte.

• α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$

•Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine α_s .

⇒ Strategy: combine many independent measurements with larger uncertainties.

Currently, best experimental determinations are \sim 1%-2% level.

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
	- ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 \frac{\alpha_s}{\pi}\right]$ •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s . $\frac{3}{\pi}$ ¹¹ ∴ $\frac{1}{\pi}$

Measuring *αs*(*Mz*)

• α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$

•Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine α_s .

⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.

• Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 - \frac{\alpha_s}{\pi}\right]$ •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s . $\frac{3}{\pi}$ ¹¹ ∴ $\frac{1}{\pi}$

Measuring *αs*(*Mz*)

• α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$

•Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine α_s .

⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.

• Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 - \frac{\alpha_s}{\pi}\right]$ •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s . $\frac{3}{\pi}$ ¹¹ ∴ $\frac{1}{\pi}$

•JLab uniquely suited:

For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity. Q^2 -dependence \Rightarrow strongest α_s

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
	- ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 \frac{\alpha_s}{\pi}\right]$ •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s . $\frac{3}{\pi}$ ¹¹ ∴ $\frac{1}{\pi}$
- •JLab uniquely suited:
	- For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
	- M_Z . Determination at intermediate Q^2 reduces uncertainty by a factor of ~5 compared to determinations near M_Z^2 . ‣Uncertainties from pQCD truncation and Higher-Twists remain small.

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2}$ ($\Delta \alpha / \alpha \simeq 10^{-10}$, $\Delta G_F / G_F \simeq 10^{-6}$, $\Delta G_N / G_N \simeq 10^{-5}$)
- •Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
	- ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 \frac{\alpha_s}{\pi}\right]$ •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s . $\frac{2}{\pi}$ ¹ ∴ $\frac{1}{\pi}$
- •JLab uniquely suited:
	- For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
	- M_Z . Determination at intermediate Q^2 reduces uncertainty by a factor of ~5 compared to determinations near M_Z^2 . ‣Uncertainties from pQCD truncation and Higher-Twists remain small.

• $\Gamma_1^{p-n}(Q^2)$: well known pQCD quantity: N⁵LO estimate + α_s at 5-loop \Rightarrow Minimal pQCD truncation error.

•Non-perturbative modeling, such PDFs, not needed (Sum rule. g_A well measured but unimportant for assessing relative Q^2 -dependence).

•Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).

- With polarized NH₃ and ³He targets: 5% systematics (experimental, i.e., not counting low-*x* uncert. Mitigated for Q^2 -dep. meas.)
- •Low-*x* issue mitigated because

‣Expected EIC data complement JLab data;

Intermediate Q^2 : small missing low-*x* contribution.

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2}$ ($\Delta \alpha / \alpha \simeq 10^{-10}$, $\Delta G_F / G_F \simeq 10^{-6}$, $\Delta G_N / G_N \simeq 10^{-5}$)
- •Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
	- ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 \frac{\alpha_s}{\pi}\right]$ •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s . $\frac{2}{\pi}$ ¹ ∴ $\frac{1}{\pi}$
- •JLab uniquely suited:
	- For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
	- M_Z . Determination at intermediate Q^2 reduces uncertainty by a factor of ~5 compared to determinations near M_Z^2 . ‣Uncertainties from pQCD truncation and Higher-Twists remain small.
- $\Gamma_1^{p-n}(Q^2)$: well known pQCD quantity: N⁵LO estimate + α_s at 5-loop \Rightarrow Minimal pQCD truncation error.
- •Non-perturbative modeling, such PDFs, not needed (Sum rule. g_A well measured but unimportant for assessing relative Q^2 -dependence).
- •Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).
- With polarized NH₃ and ³He targets: 5% systematics (experimental, i.e., not counting low-*x* uncert. Mitigated for Q^2 -dep. meas.)
- •Low-*x* issue mitigated because
	- ‣Expected EIC data complement JLab data;
	- Intermediate Q^2 : small missing low-*x* contribution.
- •Fitting simulated Bjorken sum data yields: $\Delta\alpha_s/\alpha_s \simeq 6.1 \times 10^{-3}$
	- ± 4.2 (uncor.) ± 3.6 (cor.) ± 2.6 (theo.)] × 10^{-3}
- •Same exercise with EIC yields $\Delta \alpha_s / \alpha_s \gtrsim 1.3\%$. Yet, EIC data required to minimize the low-*x* uncertainty of JLab's determination. $^{PPD 110, 074004 (2024)}$ [arXiv:2406.05591]
- Compared to EIC $&$ 3 most precise experimental determinations in PDG EIC alone JLab@22 GeV+EIC NNPDF31 Abbate (T) Verbytskyi (2j) 0.110 0.120 0.125 0.130 0.115 $\alpha_{\rm s}(\rm M_2^2)$
- •One extraction from JLab $@22$ can yield α_s with greater accuracy than world data combined.

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta a_s / a_s$ (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
	- ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab ω 22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[1 \frac{\alpha_s}{\pi}\right]$ •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s . $\frac{2}{\pi}$ ¹ ∴ $\frac{1}{\pi}$
- •JLab uniquely suited:
	- For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
	- M_Z . Determination at intermediate Q^2 reduces uncertainty by a factor of ~5 compared to determinations near M_Z^2 . ‣Uncertainties from pQCD truncation and Higher-Twists remain small.
- $\Gamma_1^{p-n}(Q^2)$: well known pQCD quantity: N⁵LO estimate + α_s at 5-loop \Rightarrow Minimal pQCD truncation error.
- •Non-perturbative modeling, such PDFs, not needed (Sum rule. g_A well measured but unimportant for assessing relative Q^2 -dependence).
- •Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).
- •With polarized NH₃ and ³He targets: 5% systematics (experimental, i.e., not counting low-*x* uncert. Mitigated for Q^2 -dep. meas.)
- •Low-*x* issue mitigated because
	- ‣Expected EIC data complement JLab data;
	- Intermediate Q^2 : small missing low-*x* contribution.
- ± 4.2 (uncor.) ± 3.6 (cor.) ± 2.6 (theo.)] × 10^{-3} •Fitting simulated Bjorken sum data yields: $\Delta\alpha_s/\alpha_s \simeq 6.1 \times 10^{-3}$
- •Same exercise with EIC yields $\Delta \alpha_s / \alpha_s \gtrsim 1.3\%$. Yet, EIC data required to minimize the low-*x* uncertainty of JLab's determination. $^{PRD 110, 074004 (2024)}$ [arXiv:2406.05591]

•One extraction from JLab@22 can yield α_s with greater accuracy than world data combined. It is just one possibility to access α_s with JLab@22 GeV. Others, *e.g.*, global fits of (un)polarized PDFs should also provide competitive determinations.

Two possibilities to extract α_s from the Bjorken sum rule:

•Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$. •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of α_s . •Good accuracy.

Two possibilities to extract α_s from the Bjorken sum rule:

•Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$. •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of α_s . •Good accuracy.

Or

•Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$: $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$ $\Gamma_1^{p-n}(Q^2) =$ 1 $\overline{6}^{g_{A}}$ $1 - \frac{\alpha_s}{\alpha}$ $\frac{1}{\pi}$ ⋯ $\frac{1}{\pi}$

Two possibilities to extract α_s from the Bjorken sum rule:

•Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$. •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of α_s . •Good accuracy.

Or

son National Accelerator Facilit

ng the Nature of Matte

- •Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$: $\Gamma_1^{p-n}(Q^2)$ = •One α_s per Γ_1^{p-n} experimental data point. 1 $\overline{6}^{g_{A}}$ $1 - \frac{\alpha_s}{\alpha}$ $\frac{1}{\pi}$ ⋯ $\frac{1}{\pi}$
	- •Lower systematic accuracy makes this not competitive for $\alpha_s(M_z)$.
	- •Small uncorrelated uncertainty (Q^2 -dependence) provides good relative $\alpha_s(Q^2)$ mapping.

Two possibilities to extract α_s from the Bjorken sum rule:

•Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$. •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of α_s . •Good accuracy.

Or

son National Accelerator Facilit

ng the Nature of Matte

- •Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$: $\Gamma_1^{p-n}(Q^2)$ = •One α_s per Γ_1^{p-n} experimental data point. 1 $\overline{6}^{g_{A}}$ $1 - \frac{\alpha_s}{\alpha}$ $\frac{1}{\pi}$ ⋯ $\frac{1}{\pi}$
	- •Lower systematic accuracy makes this not competitive for $\alpha_s(M_z)$.
	- •Small uncorrelated uncertainty (Q^2 -dependence) provides good relative $\alpha_s(Q^2)$ mapping.

⇒Sensitivity to high-order QCD loops that have not yet been directly measured.

Exploring the Nature of Matter

A. Deur CTEQ Fall-2024 meeting. 11/21/2024

Jeffersor **Lab** son National Accelerator Facility **Exploring the Nature of Matter**

pQCD Q^2 -dependence has already been tested beyond LO using various observables. This test isolates loop effects.

measurement.)

Jefferson Lab

Exploring the Nature of Matte

son National Accelerator Facility

What do we learn from measuring 2-loop corrections ?

 $\sqrt{2}$

าa the Nature of Matte

Summary

- Of the 4 fundamental couplings, α_s has by far the lowest accuracy.
- Accurate experimental determinations of $\alpha_s(Q^2)$ are crucial for QCD, SM and beyond SM studies.

•The Bjorken sum $\Gamma_1^{p-n}(Q^2) = g_1^{p-n}(x, Q^2)dx$ offers a simple and competitive method to determine α_s .

- •Study indicates that JLab@22 GeV can provide a determination of $\alpha_s(M_Z^2)$ at the ~0.6% level.
- •Polarized data at low-*x* from EIC are essential. A EIC-only determination of $\alpha_s(M_Z)$ with the Bjorken sum would reach a \sim 1.3% accuracy.
- •This is but one of several ways to determine $\alpha_s(M_Z^2)$ with JLab ω 22. Others, e.g., global fits of (un)polarized PDFs should also provide competitive measurements. Put together, they have the potential to be provide a leading contribution toward a better determination of α_{s} .
- One may also map the Q^2 -dependence of $\alpha_s(Q^2)$ in the 1-22 GeV² domain.
	- $\cdot Q^2$ < 5.3 GeV²: JLab@22 mapping sensitive to 2-loop (β_1) effect. First time this would be the case.
	- •Effects beyond QCD start at β_1 . (None at β_0)
	- •Mapping tests QCD and opens a new window for BSM physics.
	- •Sensitivity to BSM needs to be calculated.

Thank you

Back-up slides

ring the Nature of Matte.

 \Rightarrow Two possibilities to extract $\alpha_s(M_Z)$:

•Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$.

- •One α_s per Γ_1^{p-n} experimental data point.
- •Poor systematic accuracy, typically $\Delta \alpha_s / \alpha_s$ ~10% at high energy \Rightarrow Not competitive.

[Altarelli,](http://arxiv.org/find/hep-ph/1/au:+Altarelli_G/0/1/0/all/0/1) [Ball](http://arxiv.org/find/hep-ph/1/au:+Ball_R/0/1/0/all/0/1), [Forte](http://arxiv.org/find/hep-ph/1/au:+Forte_S/0/1/0/all/0/1), [Ridolfi](http://arxiv.org/find/hep-ph/1/au:+Ridolfi_G/0/1/0/all/0/1), Nucl.Phys. B496 337 (1997) •Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$. •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of α_s . •Good accuracy: 1990's CERN/SLAC data yielded: $\alpha_s(M_Z)$ =0.120±0.009

Bjorken sum rule at JLab@22 GeV

•Statistical uncertainties are expected to be negligible:

•JLab is a high-luminosity facility;

son National Accelerator Facili

the Nature of Matte.

•A JLab@22 GeV program would include polarized DVCS and TMD experiments. Those imply long running times compared to those needed for inclusive data gathering;

•High precision data already available from 6 GeV and 12 GeV for the lower Q^2 bins and moderate *x*.

•Looking at the 6 GeV CLAS EG1dvcs data, required statistics for DVCS and TMD experiments imply statistical uncertainties $\leq 0.1\%$ on the Bjorken sum. For the present exercise we will use 0.1% on all Q^2 -points with Q^2 -bin sizes increasing exponentially with Q^2 .

•Use 5% for experimental systematics (i.e. not including the uncertainty on unmeasured low-*x*). •Nuclear corrections: •D: negligible assuming we can tag the ~spectator proton •³He: 2% (5% on n, which contribute to 1/3 to the Bjorken sum: $5\%/3 \approx 2\%)$ •Polarimetries: Assume $\Delta P_e \Delta P_N = 3\%$. •Radiative corrections: 1% • F_1 to form g_1 from A_1 : 2% •*g*2 contribution to longitudinal asym: Negligible, assuming it will be measured. •Dilution/purity: •Bjorken sum from P & D: 4% •Bjorken sum from P & 3He: 3% •Contamination from particle miss-identification: Assumed negligible. •Detector/trigger efficiencies, acceptance, beam currents: Neglected (asym). Adding in quadrature: \sim 5% Under these assumptions:

Exploring the Nature of Matter

Under these assumptions:

Exploring the Nature of Matter

Comparison with EIC

Low-*x* uncertainty

•For the Q^2 bins covered by EIC, global fits will be available up to the lowest *x* covered by EIC. \Rightarrow assume 10% uncertainty on that missing (for the JLab measurement) low-*x* part. Assume 100% for the very small-*x* contribution not covered by EIC.

•For the 5 lowest Q^2 bins not covered by EIC:

•Bin #5 close to the EIC coverage ⇒ Constrained extrapolation, assume 20% uncertainty on missing low-*x* part. •Bin #4, assume 40% uncertainty, Bin #3, assume 60%, Bin #2, assume 80%, Bin #1, assume 100%.

Bjorken sum rule at JLab@22 GeV (meas.+low-*x*)

Extraction of $\alpha_{s}(M_{7})$

Extraction of $\alpha_s(M_Z)$

the Nature of Matte

Extraction of $\alpha_s(M_Z)$

ring the Nature of Matte