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• : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental 
coupling:  ( ,  , ) 
•Large efforts ongoing to reduce  (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271) 
•No “silver bullet” experiment can exquisitely determine .  
        ⇒ Strategy: combine many independent measurements with larger uncertainties.  
             Currently, best individual experimental determinations are ~1%-2% level. 

Good prospects of measuring precisely  at JLab@22 GeV with Bjorken sum rule:  

No need for absolute measurement: -dependence of  provides . 
JLab uniquely suited:  
For 22 GeV’s -domain, BJ-SR -dependence is ~50 times steeper than for EIC. With  obtained  
from -dependence ⇒ strongest  sensitivity.  
Determination at intermediate  reduces uncertainty by a factor of ~5 compared to determinations near . 
Uncertainties from pQCD truncation and Higher-Twists remain small.  

Drawback of sum rules: integrals cannot be measured down to x=0: missing low-x issue. 
: well known pQCD quantity: N5LO estimate +  at 5-loop ⇒ Minimal pQCD truncation error. 

Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats). Use 0.1% (conservative). 
With polarized NH3 and 3He targets: 5% systematics (experimental only, i.e., not counting low-x uncertainty) 
Low-x issue mitigated because  
Expected EIC data complement JLab data; 
Intermediate : small missing low-x contribution. 
Fitting simulated Bjorken sum data yields:     

Same exercise with EIC yields . Yet, EIC data required to  
minimize the low-x uncertainty of JLab’s determination. 

One extraction from Lab@22 GeV can yield  with greater accuracy than world data combined. It is just one possibility to 
access  with JLab@22 GeV. Others, e.g., global fits of (un)polarized PDFs may also provide competitive determinations.
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sum strength due to 6 11 GeV→
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[PRD 90, 012009 (2014) 
αs(MZ) = 0.1123 ± 0.0061

Missing Bjorken sum 
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unmeasured low-x (not 
accounting for EIC): 
~10%
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•Non-perturbative modeling, such PDFs, not needed (Sum rule.  well measured but unimportant for assessing relative -dependence). 
•Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats). 

•With polarized NH3 and 3He targets: 5% systematics (experimental, i.e., not counting low-x uncert. Mitigated for -dep. meas.) 
•Low-x issue mitigated because  

‣Expected EIC data complement JLab data; 
‣Intermediate : small missing low-x contribution. 

Fitting simulated Bjorken sum data yields:     

Same exercise with EIC yields . Yet, EIC data required to  
minimize the low-x uncertainty of JLab’s determination. 

One extraction from Lab@22 GeV can yield  with greater accuracy than world data combined. It is just one possibility to 
access  with JLab@22 GeV. Others, e.g., global fits of (un)polarized PDFs may also provide competitive determinations.
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Measuring αs
 Two possibilities to extract  from the Bjorken sum rule: 

•Previous slides: Measurement of -dependence of .  
•Need  at several  points. Only one (or a few) value of αs. 
•Good accuracy. 

 Or 

•Do an absolute measurement of  and solve the Bj SR for : 

•One  per   experimental data point. 
•Lower systematic accuracy makes this not competitive for . 
•Small uncorrelated uncertainty ( -dependence) provides good relative  mapping.
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QCD loops that have not 
yet been directly measured.
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Measuring αs(Q)

: start being sensitive to Q2 < 5.4 GeV2 β1,2⋯
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Unique direct sensitivity to 2+ loops. 
Despite higher accuracy, large  world data 
never sensitive to it. (Also, often: single point 
measurement.) 

pQCD -dependence has already been tested 
beyond LO using various observables. This test 
isolates loop effects.  
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What do we learn from measuring 2-loop corrections ?
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: complete set of 1-loop graphs (ignoring gravity): 
  

•QED: add quark self-energy + vertex correction, but sum cancels (Ward-Takahashi identities) 

•Weak: same as above. 

•Cannot add any other graphs because gluons (no electric charge nor weak isospin) couple 
only to quarks. (Same for ghosts: couple only to gluons. They can be ignored in any case: gauge-fixing fictitious particles.)
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: effects beyond QCD. For ex.: β1

αs αs

g gq
QED, weak, or beyond SM

1-loop LO (  )β0 2-loop NLO (  )β1
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: effects beyond QCD. β1
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Summary

• Of the 4 fundamental couplings,  has by far the lowest accuracy. 

• Accurate experimental determinations of  are crucial for QCD, SM and beyond SM studies. 

•The Bjorken sum =∫  offers a simple and competitive method to determine . 

•Study indicates that JLab@22 GeV can provide a determination of  at the ~0.6% level.  

•Polarized data at low-x from EIC are essential. A EIC-only determination of  with the Bjorken 
sum would reach a ~1.3% accuracy. 

•This is but one of several ways to determine  with JLab@22. Others, e.g., global fits of 
(un)polarized PDFs should also provide competitive measurements. Put together, they have the 
potential to be provide a leading contribution toward a better determination of . 

• One may also map the -dependence of  in the 1-22  domain. 

•  :  JLab@22 mapping sensitive to 2-loop ( ) effect. First time this would be the case. 

•Effects beyond QCD start at . (None at )  

•Mapping tests QCD and opens a new window for BSM physics.   

•Sensitivity to BSM needs to be calculated.   
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Thank you
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Bjorken sum rule 

pQCD radiative  
corrections (  Scheme.)MS Non-perturbative 1/Q2n  

power corrections.  
(+rad. corr.)

Nucleon axial 
charge. (Value 

of  in the 
 limit)

Γp−n
1 (Q2)

Q2 → ∞

+
M2

Q2 [a2(αs) + 4d2(αs) + 4f2(αs)] + . . .

  ⇒ Two possibilities to extract : 
•Do an absolute measurement of  and solve the Bj SR for . 

•One  per   experimental data point. 
•Poor systematic accuracy, typically  ~10% at high energy ⇒ Not competitive. 

•Measurement of -dependence of  
Need several   points. Only one (or a few) value of αs. 
Good accuracy: 1990’s CERN/SLAC data yielded: =0.120±0.009 
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Bjorken sum rule at JLab@22 GeV 

•Use 5% for experimental systematics (i.e. not including the uncertainty on unmeasured low-x). 
•Nuclear corrections: 

•D: negligible assuming we can tag the ~spectator proton 
•3He: 2% (5% on n, which contribute to 1/3 to the Bjorken sum: 5%/3≃2%) 

•Polarimetries: Assume ΔPe-ΔPN = 3%. 
•Radiative corrections: 1% 
•F1 to form g1 from A1: 2% 
•g2 contribution to longitudinal asym: Negligible, assuming it will be measured.  
•Dilution/purity:  

•Bjorken sum from P & D: 4% 
•Bjorken sum from P & 3He: 3%  

•Contamination from particle miss-identification: Assumed negligible.  
•Detector/trigger efficiencies, acceptance, beam currents: Neglected (asym).

Adding in  
quadrature: ~5% 

•Statistical uncertainties are expected to be negligible:  
•JLab is a high-luminosity facility; 
•A JLab@22 GeV program would include polarized DVCS and TMD experiments. Those imply 
long running times compared to those needed for inclusive data gathering; 
•High precision data already available from 6 GeV and 12 GeV for the lower  bins and 
moderate x. 

•Looking at the 6 GeV CLAS EG1dvcs data, required statistics for DVCS and TMD experiments 
imply statistical uncertainties < 0.1% on the Bjorken sum. For the present exercise we will use 0.1% 
on all -points with -bin sizes increasing exponentially with .
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Q2 Q2 Q2
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Comparison with JLab at 6 and 11 GeV

)

JLab 6 GeV (EG1dvcs): 
  

[PRD 90, 012009 (2014) 
αs(MZ) = 0.1123 ± 0.0061 Gain in the measured Bjorken 

sum strength due to 6 11 GeV→

Missing Bjorken sum 
strength due to 
unmeasured low-x (not 
accounting for EIC): 
~10%

Missing Bjorken sum 
strength due to 
unmeasured low-x 
40% to 75%

Missing Bjorken sum 
strength due to 
unmeasured low-x 
40% to 55% Gain in the measured Bjorken 

sum strength due to 11 22 GeV→



Comparison with EIC 
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Obvious complementarity with EIC

(Error bars not shown)
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Further complementarity:  
• The Bjorken sum -dependence is up to 50 times 

steeper in the JLab covered range than that of EIC. 
Since we access  via relative -dependence  
⇒ High  sensitivity. 

• EIC has essentially no unmeasured low-x issue and 
can complement JLab data.  

Q2

αs Q2

αs



Low-x uncertainty
•For the  bins covered by EIC, global fits will be available up to the lowest x covered by EIC.   
      ⇒ assume 10% uncertainty on that missing (for the JLab measurement) low-x part. 
      Assume 100% for the very small-x contribution not covered by EIC. 

•For the 5 lowest  bins not covered by EIC:  
•Bin #5 close to the EIC coverage ⇒ Constrained extrapolation, assume 20% uncertainty on missing low-x part. 
•Bin #4, assume 40% uncertainty, Bin #3, assume 60%, Bin #2, assume 80%, Bin #1, assume 100%. 
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Bjorken sum rule at JLab@22 GeV (meas.+low-x) 

We separate the total experimental 
uncertainty (i.e. excluding the low-x error) in 
point-to-point correlated and 
uncorrelated contributions, assuming 
that 40% of the total uncertainty is 
point-to-point correlated (as obtained 
for EG1dvcs Bjorken sum analysis). 

Low-x uncertainty is assumed to be 
fully point-to-point correlated. 

(The above assumptions are not crucial for the 
extraction of . Also, the proper separation would 
be determined from analysis of the actual 22 GeV 
data, without assumption.)

αs
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Extraction of αs(MZ)
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Fit and procedure: 
• Main fit function: Bjorken sum approximant at 

N4LO+twist-4, with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N4LO+twist-4 and  at 3-loop, 
for pQCD truncation uncertainty. 

• Systematically vary fit  range to minimize total 
uncertainty: Low  points have high  sensitivity but 
larger pQCD truncation error. High  points have 
smaller  sensitivity but smaller pQCD error. May not be 
worth including the lowest and/or highest  points. (Not 
worth using all points for statistics sake since stat. error is 
negligible.) 

• 2-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 

. 
2. Twist-4: free fit parameter.  
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Extraction of αs(MZ)
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Fit and procedure: 
• Main fit function: Bjorken sum approximant at 

N4LO+twist-4, with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N5LO+twist-4 and  at 4-loop, 
for pQCD truncation uncertainty. 

• Systematically vary fit  range to minimize total 
uncertainty: Low  points have high  sensitivity but 
produce larger pQCD truncation error. High  points 
have smaller  sensitivity and larger experimental 
systematic uncertainty but smaller pQCD error. ⇒May 
not be worth including the lowest and/or highest  
points. (Using all points for statistics sake is not worth it, 
since stat. error is negligible.) 

• 2-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 

. 
2. Twist-4: free fit parameter.  
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Fit these data
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Fitting the data         yields 
Δαs

αs
(MZ) ≃ 0.61 %
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