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High energy photons from the FCC-ee complex

FCC-ee booster
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Parameters used for study of FCC-ee booster
as photon source*

3xUg 94xU, Uy
beam energy [GeV] 20 20 45.6
avg. beam current [mA] 6 6 15
Avg. number of bunches 500 500 1120
rms bunch length [mm] 4 9.5 4.4
rms relative energy spread 0.4 2.2 0.4
[109]
beta at wiggler /undulator 1.6 1.6 1.6
[m]
wiggler field [T] 1 1 1
wiggler period [mm] 40 40 40
magnetic gap [mm] 10 10 10
tot. length wiggler [m] 6.4 264 5
hor. emittance [pm rad] 15 0.5 100
vert. emittance [pm rad] 1.5 0.05 0.2
Time for users (s) overa 2.5 2.5 0.4
cycleof4s

without wigglers
U, = energy loss / turn = 1.33 MeV
hor. em. =46 vom rad: vert. em. <5 om rad

*Courtesy of F. Zimmermann
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Booster cycle

45.6 GeV
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Filling pattern
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FCC-ee booster operated as photon source

Fixed-field chicane: the beam automatically moves out of the wiggler during acceleration

top view Upyx3: 1U4064m m) ¢ =15pm rad
Uyx94:53U405m m) ¢, =0.5pm rad
constant-field constant-field
chicane accelerated beam chicane
(45.6 GeV)
------------------------------------- Permanent magnet technology
- B magneticgap(mm) 10
permanent injected beam max. undulator field [T] 0.71
magnet (20 GeV) undulator period [mm] 28 U28
undulator undulator unit length [m] 5
wiggler field [T] 1
To be studied: what happens during the ramp? wiggler period [mm] 40 U40
' ' Upx3 Upx 94
wiggler unit length [m] 6.4 5
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Horizontal emittance versus circumference

Storage ring photon sources upgrades to decrease the horizontal emittance
FCC-ee booster small emittance as a result of large circumference + damping wigglers/undulators
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Diffraction limited storage ring (DLSR)

Aring with horizontal emittance ¢, (&, < &) Is diffraction limited at all photon wavelengths A
emitted by undulators for which

y) diffraction limited at photon wavelengths
Ex,y Eph ¥ e >100 A (< 120 eV) = &, ~ 0.8 nm rad (ESRF, APS, PETRA Il
>10 A (< 1.2 keV) = &, ~ 80 pm rad (APS-U, EBS)
/ I >1 A (<12 keV) = ¢, =~ 8 pm rad (PETRA V)
Electron beam emittance Photon beam emittance >0.1A(< 120 keV) = &, ~ 0.8 pm rad (FCC-ee booster + Uy x 94)
Exy = O-x,yo'alc,y Eph = O-pho-zgh
O =rms beam size o' =rms beam divergence

Small emittance ‘ high brilliance and high coherent flux

1 | European XFEL
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Diffraction limited storage ring (DLSR) @_, %

High brilliance . Flux
Brilliance = — —
5 ) | 41T ZnyZny
- /mebeam size . =
o' =rms beam divergence ’ \

Source dimension and dlvergence Y. Hwu & G. Margaritondo, JSR 28-3, 1014 (2021)

— 2 2 , »
Without dispersion xy = \/Gx»y +opn Txy \/“ %y + Oph - 1 ”

Oxy = \/‘Sx'y Pry Different approximations of single electron undulator emission to gaussian beam
oy =Jenty NN R T
Kim (NIM 1986) [2/L VAL /AR AJAm L/4m
Kim (PAC87) [2/2L V2AL /4 A4 L/2m
Ellaume (2003) /,1/2[, V2AL/2m AJ2m L/m

I BN 50 European XFEL Lindberg & Kim (2015) /A/4L \/AL/Zn A/An L/nt
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Diffraction limited storage ring (DLSR) Without di _
Ithout dispersion

Flux Flux 4 Flux

Maximum brilliance for €., < &€ Brilliance = ~ = Oxy = |&xy Pxy
oy Tph 423, 3 303!, 4mlel 22

ph
!/
O xy = ’gx,y/lgx,y

For &y, =~ &, brilliance maximized when the electron and photon beam phase spaces are matched

Oph
- p - Fl Flux
Pry = =L/m Brilliance = —; - N —
AT (Ex+Epn) (Ey+Epn) A
= o,yl0,
-- 'Bph ph!Oph PETRAIV: undulator length = L =4 m &, = 20 pm rad for
JA/4L VAL/2m A/AT 1A &,, = 8 pmrad
X' By =10m X By =L/T=127m

a X ) ¢ Photon phase space
Electron phase space

I BN "W European XFEL Not matched Matched
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Diffraction limited storage ring (DLSR)
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O =rms beam size

!/ .
O =rms beam divergence

Without dispersion

High transverse coherence Coherent Flux = f, - Flux Ory = |exy Bey

Fraction of X-rays transversally coherent

Assuming
Ex =& =€

1 | European XFEL
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Diffraction limited storage ring (DLSR)

High transverse coherence

Coherent Flux = f, - Flux

Fraction of X-rays transversally coherent

fo = (Y1) -
(7t am) (T var) 7

flat beam, FCC-ee booster 1
( / 47T)

fe=fen =
©e L AL T A
R AN L R ALY

European XFEL

round beam, DLSR
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Average Brilliance [10%'ph/(s mm? mrad? 0.1%BW)]

High energy photons from the FCC-ee complex

Average and peak brilliance
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* unpublished
from energy/pulse
courtesy of W. Decking (2021)
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T.Tanaka, JSR (2021). 28, 1267-1272
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Scientific opportunities for hard X-ray lasing (40-100 keV)

In general: Non-reproducible processes that live on time-scales of microseconds to
femtoseconds and happen in difficult to access sample environments.

Two examples are (for more see workshop Scientific opportunities with very hard x-ray
FEL radiation, European XFEL Jan 18-20 2023):

“ High energy density (HED) science: Extreme conditions can be produced only for
short times and once per setup (e.g. shock-compressed diamond anvil cell, pulsed
magnetic fields). These set-ups are so complex that detectors have to be placed far
away and see only a limited solid angle. Hard X-rays can penetrate the sample
environments and compress the Q-space in scattering experiments.

Image source: Science, doi: 10.1126/article.30069

welding direction

" In-situ microscopy on technological processes, e.g. welding or battery research: On
the best storage rings, these experiments are current flux-limited to a time resolution
of seconds. With very hard X-ray lasing in burst-mode this can be pushed to
microseconds and faster.

laser '
A —_ plume

|

Image source: Chinese Journal of Lasers, Volume. 46,
I B 0 European XFEL Issue 9,902003(2019)

Courtesy of Harald Sinn
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Above 100 keV up to few MeV
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o

FCC-ee

Average Brilliance [10?'ph/(s mm? mrad® 0.1%BW)]
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60 MeV <Ey < 350 MeV

" Low energy QCD

Figure 18. The appropriate degrees of freedom with which to describe nucleon structure
depend on the distance scale at which it is probed: quarks and gluons at high energies
(left); or nucleons, their pion clouds and nucleonic excitations at low energies (right).

International workshop on next generation gamma-ray source
NS W W European XFEL C R Howell et al 2022 J. Phys. G: Nucl. Part. Phys. 49 010502
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In the collider up to 100 MeV

beam energy [GeV]

avg. beam current [mA]
Avg. number of bunches
rms bunch length [mm]
rms relative energy spread
[109]

beta at wiggler /undulator

[m]
hor. emittance [pm rad]
vert. emittance [pm rad]

1 | European XFEL
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Flux (ph/s/0.1%B.W.)

High energy photons from the FCC-ee complex
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In the collider with SCUs up to 300 MeV

NbTi@4K
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XFEL from linac

Possible parameters after photocathode electron RF gun + damping ring inserting bunch comprressors at
positions to be studied

Other Science Opportunities at the FCC-ee, Sara Casalbuoni, 28.11.2024

20

Doubling the number of klystrons in the high energy linac it’s possible to increase the electron beam energy
to 25 GeV

No show stoppers but more detailed simulations including collective effects are necessary

European XFEL

Electron beam parameters*

Energy (GeV)
Bunch length (pm)

Slice emittance x,y (um rad)
Bunch charge (pC)
Slice energy spread

Beta x,y (m)

*Courtesy of P. Craievich (PSI)

25
15

0.4
250
0.2%o
30
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Booster filling patterns

B8 During injector commissioning: exploratory studies

B Injector can be used as XFEL with
WW, ZH and ttbar modes

B8 Only few bunches can be used
in the Z mode for an XFEL (not possible
during accumulation at 100 Hz)

To be studied if the abort gap would allow
for additional bunches for the XFEL

Plots are courtesE/ of H. Bartosik
] | uropean XFEL
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XFEL from linac

Electron beam Superconducting Undulator
Energy (GeV) 25 _
Bunch length (pm) 15 NbTi@4K HTS@4K
Emittance x,y (um rad) 0.4 Vacuum gap (mm) 5 Vacuum gap (mm) 5
Bunch charge (pC) 250 Ay(mm) 18 Ay(mm) 13

0,

Energy spread 0.2%o B,y (T) 1.83 Bax (T) 2.2
Beta x,y (m) 30

Lsar( M)
Energy,i, (keV) 100

at 100 Hz when booster is not in
accumulation mode Energymin (keV) 60

Pulse energy (mJ) 0.95 Pulse energy (mJ) 0.4

To be studied if possible to increase up to trains 100 ns long with > 4 bunches

WIS W [, Buropean XFEL Calculations with Ming Xie’snFEL formula in SIMPLEX,

T. Tanaa J Svnchrotron Radiations 2015. 22(5) 1319-26
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Conclusions

With respect to PETRA 1V, planned diffraction limited storage ring with smallest emittance, the FCC-ee
booster has the potential to produce at 50-100 keV

a fraction of coherent X-rays larger by one order of magnitude

an average brilliance larger by up to two orders of magnitude

a peak brilliance larger by up to four orders of magnitudes

1 | European XFEL
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Conclusions

Use the booster at collision energy or the collider to produce photons up to 20 MeV for

Nuclear structure and astrophysics
Nuclear applications
Hadronic parity violation

and from 60 to 300 MeV for low energy QCD
The injector with superconducting undulators could be used as XFEL for producing hard to very

hard X-rays with pulse energy ~mJ. This would be possible mainly for WW, ZH and ttbar modes

1 | European XFEL
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Outlook

To be further studied the compatibility of:
the use of the FCC-ee booster for the collider and requirements from possible users

the parameters of the FCC-ee injector used as a linac-based XFEL

1 | European XFEL
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Thank you for your attention !

1 | European XFEL
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