Science with Photons at 10s of GeV

FCC

Frank Zimmermann

many thanks to Jian-Ping Chen, M.W. Krasny, Ying Wu, J.M. Byrd and A. Variola

"Other Science Opportunities at the FCC-ee", 28 November 2024

FCC-CBS: 1000-100000x more flux & higher energy than ELI-NP

Comparison of ELI-NP and FCC-ee Compton Backscattering Source (FCC-ee-CBS), assuming Yb:YAG laser (2.3 eV)

	ELI-NP	FCC-ee-CBS-20	FCC-ee-CBS-45	FCC-ee-CBS-120
beam energy [GeV]	0.72	20	45.6	120
average beam current [A]	0.8x10 ⁻⁶	0.15	0.15	0.05
beam size at laser CP	~0.5	~0.5	~0.5	~0.5
[mm]				
Compton x parameter	0.025	0.7	1.6	4.2
max photon energy [GeV]	0.02	8.3	28	97
photon flux [1/s]	10 ⁹	~10 ¹³	~10 ¹³	~10 ¹³

corrected by L. Serafini

The photon energies are 1000 times higher, the photon flux exceed ELI-NP's by about a factor 10,000. To achieve this rate the laser beam recirculator system of ELI-NP would need to be modified or, possibly, be replaced by an optical cavity, suitable for cw operation.

nuclear & hadron physics, QCD exploration

WHAT CAN WE LEARN FROM EXPERIMENTS WITH 10 GEV PHOTONS¹

Jean-Marc Laget 1998 CEA/Saclay, DAPNIA/SPhN, F91191 Gif-Sur-Yvette Cedex, France

to "see" confinement mechanisms at work: production of exotic mesons (glueballs, etc...); exchange of, free or bound, partonic systems

Fig. 12. The cross-section of the photoproduction of the various vector mesons is plotted against the c.m. energy W. Dashed lines include the Pomeron exchange only. Dotted curves include also f_2 exchange. The full curves include also σ exchange (ρ production) or π exchange (ω production).

Progress in Particle and Nuclear Physics Volume 50, Issue 2, 2003, Pages 487-497

Hadron and nuclear physics with inverse compton gamma-rays at SPring-8

M. Fujiwara ^{a b}

2024

Exclusive photoproduction of a photon-meson pair: A new class of observables to probe GPDs

Goran Duplančić,¹ Saad Nabeebaccus,^{2,*} Kornelija Passek-K,¹ Bernard Pire,³ Jakob Schönleber,^{4,5} Lech Szymanowski⁶ and Samuel Wallon²

¹Theoretical Physics Division, Rudjer Bošković Institute, HR-10002 Zagreb, Croatia ²Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

³CPHT, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
⁴Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
⁵RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
⁶National Centre for Nuclear Research (NCBJ), 02-093 Warsaw, Poland

ongoing and planned studies at JLAB with 10-20 GeV photons

real photon beam in JLAB Hall D (~10 GeV) is being used for spectroscopy in search of **exotic mesons** (hybrid states) and **near-threshold charm (J/psi) production** to study the **gluon field contribution** (so called trace anomaly) **to the proton mass** (which has been a hot topic in recent years)

JLab upgrade to 22 GeV would yield real photon beam at ~ 20 GeV; physics case highlighted in JLab22 whitepaper (<u>https://arxiv.org/pdf/2306.09360</u>)

Figure 2: A sketch of the polarized photoproduction of $a_2^-(1320)$ via *t*-channel interaction with the target. Preliminary data from GlueX indicates that the dominant production mechanism of the spin-2 (*D*-wave) peak consistent with the a_2 in the $\eta\pi^-$ spectrum is by exchange of an unnatural parity particle ($\epsilon = -$).

this energy range could cover, in addition to having **much wider phase space for charmonium**, the **beauty quarkonium** and **near-threshold Upsilon productions** (cleaner than J/psi case and **one of the main goals of EIC physics**)

→ important impact on study of gluon field contributions to proton mass

circularly polarized photon beam → polarized gluon distribution, testing the convergence of the polarized sum rule (GDH sum rule) and helping constrain the high energy behavior (the Regge theory parameters)

scattering light off light ?

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration

2017

Nature Physics 13, 852–858 (2017) Cite this article

ATLAS observes light scattering off light 2019

The ATLAS Collaboration has reported the observation of light-by-light scattering with a significance beyond eight standard deviations

19 MARCH, 2019

ultra-peripheral heavy-ion collisions

photons (counter propagating) in the energy region just below the e^+e^- production threshold (~ 500 keV) to study the elastic photonphoton collisions (box diagram physics)... small cross-section \rightarrow Fabry-Perot cavities to enhance flux W. Krasny

40-60 GeV photons off ~1 eV photons ? Or 63 GeV photons scattering off 63 GeV photons (Higgs) ?

J. Ellis et al, 2022

ThomX as a test bed for CBS beam dynamics

Laser /Cavity system

- average power 100W
- Stored power up to 1 MW (30 mJ/pulse)

Accelerator

- 1 nc / bunch, f_{rep} 50 Hz
- 50-70 MeV
- Ring, f_{rep} 16 MHz
- σ_e ~ 70 μm

Flux ph/s

- $\epsilon_{\rm N}$ ~ 5-10 mm.mrad
- $\tau_e \sim 10-30 \text{ ps}$

<u>design X-ray beam</u>

Brightness ph/s/mm²/0.1% BW / mrad²1011Transverse size of the source70 μEx on axis40-9

Three different regimes:

- 1. Ring dominated and laser perturbation,
- Laser ring regime (Thom-X design)
- Nonlinear laserinteraction with harmonics

2m

Y. Chaikovska

	Today	Near future	Next future	Unit
Synchro	Yes (jitters)	Jitters reduced		
Injection frequency	10	50		Hz
e- energy	50	50-70		MeV
Avg stored e- charge	40	250	1000	pC
Avg stored laser power	90	500	700	kW
e- spot size	77			μm
Laser spot size	65		40	μ m
X-ray Compton edge	45	45-90		keV
Avg total flux	1.0 × 10 ¹⁰	$1.5 imes 10^{12}$	$\textbf{1.0}\times\textbf{10}^{13}$	ph/s