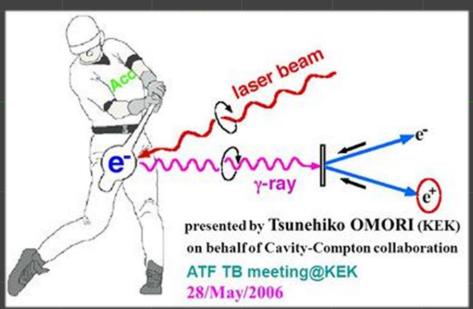


Laser Compton scattering in the collider

Illya Drebot

$$\mathbf{V} = \frac{(1 + \underline{e}_k \cdot \underline{\beta})}{(1 - \underline{n} \cdot \underline{\beta}) + \frac{h \nu_L}{mc^2 \gamma} (1 - \underline{e}_k \cdot \underline{n})} \nu_L \approx 4 \gamma^2 \nu_L$$

What is Compton Back Scattering?



$$E_{ph} = \frac{4\gamma^2 E_l}{1 + X + \gamma^2 \vartheta^2}$$

$$X \equiv \frac{4\gamma E_l}{mc^2}$$

$$\mathbf{V} = \frac{(1 + \underline{e}_k \cdot \underline{\beta})}{(1 - \underline{n} \cdot \underline{\beta}) + \frac{h v_L}{mc^2 \gamma} (1 - \underline{e}_k \cdot \underline{n})} v_L$$

$$E_{ph} = \frac{4\gamma^2 E_l}{1 + X + \gamma^2 \vartheta^2}$$

$$X \equiv \frac{4\gamma E_l}{mc^2}$$

Why we CBS need it in the FCC?

Gamma source

Beam intensity control

Beam diagnostic (Polarimetry)

FCC

13 june / FCC week

Robert Kieffer

2

Number of scattering particle 10³-10⁴ per one shot

The FCC Compton polarimeter

- Centre of mass energy calibration is obtained from the resonant depolarization scans (RDP) on pilots.
- · Direct energy measurement by pattern position
- Precise longitudinal polarization measurement on physics bunches (expected to be zero at 10⁻⁵).
- Free spin precession (looks challenging).

Implementation needs

- Dedicated powerful laser and adapted hutch
- Laser Compton interaction chamber LIP
- Spectrometer magnet stuffed with Hall sensors
- Compton electron/photon extraction line chamber
- Particle sensors (silicon pixels detectors)
- Polarizing wigglers to speedup polarization buildup.
- RF kickers to apply resonant depolarization.

8 x 10 mm²

350 x 2 mm²

From N.Muchnoi

Why we need?

Asymmetry in the bunch current leads to Flip-flop instability. To avoid this bunches at IP must be bunches should be tightly controlled, with a maximum charge imbalance between collision partner bunches of less than 3–5%.

How to realise it?
Compton Back Scattering (CBS)

10 m dipole magnet Ti:sapphire laser pulse λ=800 nm

Laser parameters

Specifications THALES		
Version	Alpha kHz	
Repetition rate (kHz)	1 to 10	
Energy per pulse (mJ) after compression	10 to 50	
Pulse duration FWHM (fs)	Down to 25	
Pulse to pulse energy stability (% rms)	≤ 1.5	
M^2	< 1.8	

beam-laser IP

betatron collimation

off-momentum collimation

1.5

4000

β_x

β_y

D_x

1.0

2000

1000

33000 33250 33500 33750 34000 34250 34500 34750 35000

s [m]

Beam ps before CBS

Beam ps after CBS

Loss map

Spectrums

For 50 mJ with rep rate 3.7 kHz

Z E= 45 GeV E_{phmax} =24 GeV

W E= 80 GeV E_{phmax}=52 GeV

ZH E= 120 GeV E_{phmax}=89 GeV

 \overline{tt} E= 180 GeV E_{phmax} =149 GeV

2nd FCC Italy & France Workshop 05/11/2024

Antoine CHANCE

FCC booster design

CSS

15

Proposal of to use the booster as a light source

Courtesy: Sara Casalbuoni

2nd FCC Italy & France Workshop 05/11/2024

Antoine CHANCE

FCC booster design

cea

5

Proposal of to use the booster as a light source

Courtesy: Sara Casalbuoni

Laser & Fabry-Perot cavity

Laser and FP cavity		
Laser wavelength	1030 nm E _{las} =1.2 eV	
Laser and FP cavity Frep	33 MHz	
Pulse energy	15 mJ	
FP waist	70 μ m	
Laser pulse length	1 ps	

Laser and Fabry-Perot cavity accumulate photons.
It give us possibility to collide photons with pulse energy of 15 mJ

(3e8*1120/90.7e3)/1e6=3.7 MHz

33MHz/3.7MHz=8.9

Total # of photons 1.59e4*3.7 MHz=5.8e10

(3e8*1120/90.7e3)/1e6=3.7 MHz

33MHz/3.7MHz=8.9

Total # of photons 1.59e4*3.7 MHz=5.8e10

Experiment proposal at FACET-II Facility for Advanced Accelerator Experimental Tests

Leverage the E320 infrastructure at FACET-II to provide an R&D platform for:

- Bunch-to-bunch laser intensity control.
- Halo collimation.
- Diagnostics to demonstrate collimation and control of high energy beams.

FACET-II is the only User Facility in the world that combines 10 GeV beams with high-power lasers to accommodate this type of R&D.

Thank you

Please find here spectrums and photons distribution

https://cernbox.cern.ch/s/4k86vWKIqMD23np

Beam ps before CBS

Possible location of CBS IP

Beam ps after CBS

Possible location of CBS IP

Why we need?

Asymmetry in the bunch current leads to Flip-flop instability. To avoid this bunches at IP must be bunches should be tightly controlled, with a maximum charge imbalance between collision partner bunches of less than 3–5%.

Laser & Fabry-Perot cavity

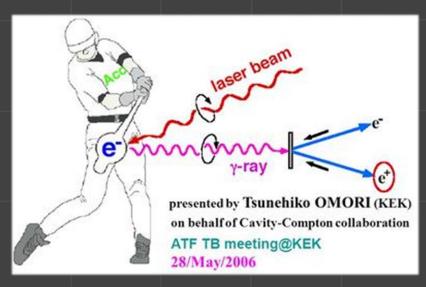
Laser and FP cavity	
Laser wavelength	1030 nm $E_{las} = 1.2 \text{ eV}$
Laser and FP cavity Frep	96 MHz
Pulse energy	2.7 mJ
FP waist	40 μm
Laser pulse length	1 ps

Laser and Fabry-Perot cavity accumulate photons.
It give us possibility to collide photons with pulse energy of 3 mJ

Brixsino Fabry-Perot cavity

BriXSinO TDR: https://marix.mi.infn.it/brixsino-docs/

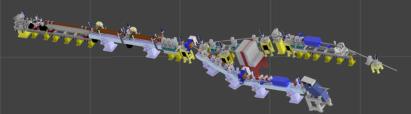
(3e8*1120/90.7e3)/1e6=3.7 MHz


96MHz/3.7MHz=25.9

Total # of photons 2.22e3*3.7 MHz=8.2e9

What is Compton Back Scattering?

$$\varepsilon_{\gamma m} = \frac{4\gamma^2 \varepsilon_L \cos^2\frac{\alpha_0}{2}}{4\gamma \frac{\varepsilon_L}{mc^2} \cos^2\frac{\alpha_0}{2} + 1} \approx 4\gamma^2 \varepsilon_L \cos^2\frac{\alpha_0}{2}$$



3 possible

Based on linear accelerators

Projects: STAR2 SMART*LIGHT

Advantage:

- Small emittance 2-3 mmrad
- Possibility to focus beam at 5-10 μm
- Hight flexibility in tuning

Disadvantage

Low repetition rate 100 Hz

Parameter	Value
Energy (MeV)	20-45
Bunch charge (pC)	50 - 200
Repetition rate (MHz)	100
Average Current (mA)	< 5
Beam power @ dump (W)	400
$\epsilon_{n,x,y}$ (mm mrad)	1.0
energy spread (%)	< 0.2
Bunch separation (μs)	> 1
Beam energy fluctuation (%)	< 0.2
Pointing jitter (μm)	50.

Advantage:

• Hight repetition rate 17.8 MHz

Disadvantage

- Bigger emittance 60 mmrad
- Bigger transvers size at IP ~70 μm

