

Low-energy dense positron beams

Other Science Opportunities at the FCC-ee

Benjamin Rienäcker | Research Associate | University of Liverpool / QUASAR Group

1/3 – Radionuclide sources

Radionuclides	Half-life	Positron decay (%) ^{b)}	Maximum positron energy	Average positron energy	Main γ-rays (keV) [%]			
18F	109 77 min	96 73	(KeV) 634	(KeV)				
⁶⁸ Ga (Ge)	67.71 min ^{f)}	87.72	1899	836	1077.3 [3.2]	Positron Emission		
		1.19	822	353		Tomography (PET)		
124 I	4.18 d	$\Sigma\beta^+$	2138	975	602.7 [62.9]			
²² Na	2.602 a	90.33	546	216	1274.5 [99.9]	Tool in recearch		
⁴⁸ V	15.974 d	49.9	695	290	983.5 [99.98]; 1312.1 [98.2]			

²²Na (halflife 2.6 years):

- Most common laboratory positron source.
- Single supplier world-wide for intense sources (50mCi)
- 4-pi source with $2 \cdot 10^9 \text{ e}^+/\text{s}$ at @ 0-546keV
- Moderated beam: $3 \cdot 10^6 \text{ e}^+/\text{s}$ at @ 6eV

2/3 – Reactor sources

Example: Neutron induced positron source Munich (NEPOMUC), Germany

Other reactor-based positron sources:

- ILL (Institut Laue-Langevin) in France
- KUR (Kyoto University Research Reactor) in Japan
- POSH (Delft University of Technology) in the Netherlands
- PULSTAR (NC State University) in the USA

K915

Linac	e ⁻ energy MeV	e^- beam power W	slow e^+ flux $10^7 e^+/s$	efficiency $10^{-7} e^+/e^-$
Oak Ridge 38	180	55000	10	0.53
Livermore 37	100	11000	1000	16
ETL, Japan 39	75	300	1.0	6
KEK [41]	55	600	5	7.3
Ghent 40	45	3800	2	0.4
Giessen 36	35	3500	1.5	0.2
Mitsubishi, Japan 42	18	16	0.077	1.35
GBAR, CERN	9	2500	5	0.28
Saclay, CEA [33]	4.3	300	0.2	0.05

moderated $10^5 \text{ e}^+/\text{pulse}$ $10^9..10^{10} \text{ e}^+/\text{sec}$ at @ E_L = 0.05-20keV

10-100kHz repetition rate

Tungsten wired: $\varepsilon = < 10^{-3}$

AE91S

Positron moderators

Positron implantation profile on W (Makhov profile) 10^{-2} stopped fraction (arb. units) 10^{-4} 10^{-6} 10^{-8} E = 1 keV 10^{-10} -= 250 keV = 500 keV 10-12 = 750 keV = 1000 keV 10^{-14} 101 10² 10³ 104 10⁵ 10⁰ 10^{6} z (nm)

Positron Affinity A + (eV)

-7.36	-3.11												
Na -7.12	Mg -6.18											Al -4.41	Si -6.95
K -7.05	Ca -6.40	Sc -5.10	Ti -4.06	V -3.44	Cr -2.62	Mn -3.72	Fe -3.84	Co -4.18	Ni -4.46	Cu -4.81	Zn -5.24		Ge -6.69
Rb -6.98	Sr -6.41	Y -5.31	Zr -3.98	Nb -2.93	Mo -1.92	Tc -1.67	Ru -1.92	Rh -3.10	Pd -5.04	Ag -5.36	Cd -5.78		Sn -7.60
Cs -6.94	Ba -6.13	Lu -4.90	Hf -3.70	Ta -2.63	W -1.31	Re -0.97	Os -0.89	lr -1.53	Pt -3.36	Au -4.59		_	Pb -5.56
Mode	Moderator Source Fig. 15 ϵ e^+/sec						Footnotes/notes						
Lab	boratory 1	beams											
Cu(111) + S		(A1)	(a)	$\sim 1 \times 10^{-3}$				2.8×10^{6}			a	
W(110)		(A1)	(a)		$\sim 2 \times 10$)-3		5.6×10 ⁶		b,	с	
W(110)		(A2)	(a))-3		8.4×10^{6}		d/unt	ested		
W vanes		(A3)	· (ь)	$\sim 7 \times 10^{-4}$				2.2×10^{6}		e		
Ne ($\sim 1 \ \mu m$)		(A3)	(d)	$\sim 7 \times 10^{-3}$				2.2×10^{7}			f	,
Foils (A3) (c)													
W(100)					$\sim 6 \times 10^{-4}$ 1.9 $\times 10^{6}$					g,h∕∼1 µm			
Ni(100)				$\sim 7 \times 10^{-4}$ 2.2×10 ⁶					h∕~0.3 µm				
W polycrystalline				$\sim 2.6 \times 10^{-4}$ 8.3×10					×10 ⁵	$h/\sim 6 \ \mu m$			
W polycrystalline			$\sim 1 \times 10^{-4}$				3.2×10^{3}			i∕~15 µm			
Ni polycrystalline				$\sim 1 \times 10^{-4}$				3.2×10^{3}			$h-j/\sim 5 \mu m$		
Ni polycrystalline				~2.5×10 ⁻⁴ 8.0×10 ⁵				$h/\sim 2 \mu m$					
I	ntense bea	ams								-			
Cu(111)	+S	(A4)	(e)	2.4×10^{-4})-•		8×10 ⁷			k/dc beam	
W vane	es	(A5)	· (b)	1.5×10^{-6})-0		8.6×10^{8}		1/1440 pps		
W vane	es	(A6)	(b),	~9×10-6			5×10'		m/100 pps			
W vanc	es	(A7)	(b)	2.4×10 ⁻⁸			2×10"		n/estimated only			

+ some newer materials like 4H/6H-SiC ...

Schultz and Lynn, 1988

AEGIS

QUASAR

1mm

Li

Be

Combination positron sources

L. Gerchow et al., *Instruments* **2018**, *2*, 10 DOI: 10.3390/instruments2030010

Low energy positron/positronium physics at one glance:

- 1. Bose-Einstein condensates (BEC) with positronium
- 2. Fundamental **symmetry** tests (annihilation channels)
- 3. Precision **QED** studies (Ps spectroscopy)
- 4. Material studies (defect studies)

1/3 Towards Bose-Einstein condensates

Nanoporous silicon targets are able to produce Ps at temperatures of **150K** and below.

Laser cooling precooled positronium atoms could reduce the temperature by **200K**, **i.e. down to <10K**

A positronium density of 10^{15}mm^{-3} is necessary for forming a BEC. The currently available positron sources cannot reach that.

When a Ps-BEC annihilates, a coherent burst of gamma rays is emitted. A proposed way to build a 511 keV gamma ray laser!

Benjamin Rienäcker

2/3 Fundamental symmetries

Tests of fundamental symmetries and BSM searches

Tests of the Weak Equivalence Principle with leptonic systems

Image from EPJ D 74 (2020) 79

Searches for rare Ps annihilation channels

Table from Phys. Part. Nucl. 37 (2006) 321-346

Decay mode	90% upper limit, ppm
$\gamma + X$	5-1
	1.1
	340
$\gamma + X \longrightarrow \gamma + 2\gamma$	28
	300
γγ	233
	350
$\gamma\gamma\gamma\gamma$	2.6
	3.7
$\gamma + X_1 + X_2$	44
Invisible	2.8
	540

Rare-event searches limited by statistics

Detection of multipartite entanglement in Ps annihilation γ rays

Image from Sci. Rep. 9 (2019) 8166

Requires simultaneous detection of three Compton scattering events

Requires cold long-lived Ps sources in very high amounts

t915

New precision QED measurements with colder Ps sources

Nuclear effects

• Magnetic moment (HFS)

• Charge distribution

Hydrogen-like electronic atom $(Z\alpha)^2 m/M$ or $\alpha(Z\alpha)m/m_p$ $(Z\alpha mcR_N/\hbar)^2$ Positronium α^2

Ps is an ideal system to test bound state QED due to the absence of nuclear effects

Decay times

 $\Gamma_o^{\text{th}} = 7.039979(11) \ \mu \text{s}^{-1},$ $\Gamma_p^{\text{th}} = 7989.6178(2) \ \mu \text{s}^{-1},$ $\Gamma_o^{\text{exp}} = 7.0404(10)^{\text{stat.}}(8)^{\text{syst.}} \ \mu \text{s}^{-1}$ $\Gamma_p^{\text{exp}} = 7990.9(1.7) \ \mu \text{s}^{-1}$

Phys. Part. Nucl. 37 (2006) 321-346

Searches for BSM physics in:

- energy intervals
- decay rates
- decay modes

- Fifth fundamental force
- > Axion-like particles
- > Symmetry violations

1³S-2³S transition frequency

Phys. Rep. 422 (2020) 1-63

Limited by second order Doppler effect, requires colder Ps sources

Take home message

Material Science: non-destructive nanoprobes

=> possibly beam time for global partners in industry and academia?

CERN

A new intense low-energy e+ beam at Next generation Ps sources with high intensity, low energy and higher density

Better measurement efficiency (results/time)

Higher data quality (less systematics)

Unlocking exciting new possibilities (e.g. Ps-BEC, precision QED, BSM)

THANK YOU