

Higgs to Invisible: Full Simulation and Detector variation

Kétévi Assamagan, Diallo Boye, <u>Ang Li</u>, Andrea Sciandra, Scott Snyder

FCC Higgs/Top performance, Sept. 24, 2024

Introduction

Higgs decays to neutrinos Potentially connected to BSM models Difficult at Hadron Collider

- Know initial states information (no PDF involved)
- Energy conservation at Lepton Collider

Previous analysis done by A. Mehta and N. Rompotis (Liverpool group)

Event Simulation

***Fast Simulation (Winter2023):**

- p8_ee_WW_ecm240
- ▶ p8_ee_ZZ_ecm240

***Full Simulation (Local production):**

- Whizard + Pythia6 for stdhep
- ddsim for full simulation
- k4run CLDReconstruction.py for reconstruction

Signal

 \succ ee->ZH \rightarrow

(Z->mumu) (H->ZZ->4nu) (Z->ee) (H->ZZ->4nu) (Z->qq) (H->ZZ->4nu)

- (Z->nunu) (H->ZZ->ee nunu)
 (Z->nunu) (H->ZZ->mumu nunu)
 (Z->nunu) (H->ZZ->qq nunu)
 (Z->nunu) (H->qq)
 ► ee->ZZ →
 - (Z->ee)(Z->nunu) (Z->mumu)(Z->nunu) (Z->qq)(Z->nunu) (Z->ee)(Z->qq) (Z->mumu)(Z->qq) (Z->qq)(Z->qq)

≻ ee->WW →

(W->munu)(W->munu) (W->enu)(W->enu) (W->lv)(W->qq)

ee->tautau → Inclusive tau decay

More background

Fast SimIDEA

FCCAnalyses: FCC-ee Simulation (Delphes)

More plots

Selection and analysis

- ✤ Boost all final state particles to COM frame as defined by the crossing angle.
- Select tight electrons/muons with p > 10 GeV and isolation fraction < 0.5</p>

Lepton Channel:

- > Exactly two same flavor, opposite sign $e(\mu)$
- $\succ p_T^{visible} > 10 \text{ GeV}$
- ▶ $|m_Z 91.0| < 4 \text{ GeV}$

Hadronic Channel:

- No good leptons
- $\succ p_T^{visible} > 15 \text{ GeV}$
- ➢ 86 GeV < m_{vis} < 105 GeV</p>
- Apply bremsstrahlung recovery to selected leptons:
 - > find highest-momentum photon with $\Delta \theta(l, \gamma) < 0.05$
 - > Add to the lepton if it passes the NN cut
- Calculate missing momentum from sum of all visible particles
- Calculate recoil mass

Resolution study between fast sim and full sim

- > Using WHIZARD (Z \rightarrow ee/µµ)(H \rightarrow 4v) samples
- Same samples processed with CLD full sim and CLD and IDEA Delphes fast sim
- Resolution is worse for CLD than IDEA, fast sim
- Changing resolution in fast sim to the CALICE resolution gets closer to fullsim
- > This is more pronounced for muon than electron
- > Resolution is worse for full sim than for fast sim, especially at low p_T

Effect on the crossing angle

- These plots correspond to one p_T slice: 40 GeV < p_T < 50 GeV
 p_x^{visible}: x component of the total momentum for the ZZ samples with final states qqqq, eeqq and μμqq
- > Correction: boost in the negative x direction by $\beta = \sin(\frac{\theta}{2})$ where total crossing angle of 0.03 rd.
- > This effect is not seen/included in fast simulation.

Resolution study between fast sim and full sim

> These plots correspond to one p_T slice: 40 GeV < p_T < 50 GeV

We note the low-end tail on the electron resolution that is not reproduced by the fast simulation.

Bremsstrahlung recovery

Electrons traversing the detector radiate photons at small angles (bromsstrablung)

at small angles (bremsstrahlung)

- > Leads to large low-mass tail in $m_{e^+e^-}$
- Not taken into account in Fast Sim
- Try to correct by finding the highest-momentum photon within a 0.05-radian cone around the lepton

Train a NN to decide whether to add the photon to the lepton

- Classify leptons based on whether adding the photon makes its momentum
- ✤ it closer to or further from the momentum from MC truth
- If closer, than we say the photon should be added (`signal')
- If farther, then we say the photon should not be added (`background')

Used DNN method from TMVA.

- Two hidden layers with tanh activation functions with 14 and 6 nodes.
- Output node used a linear activation function

NN input variables

- Angle between lepton and photon
- Lepton momentum
- Lepton polar angle (theta)
- Energy of the lepton's calorimeter cluster

Choose to add the photon if NN output > 0.5

Bremsstrahlung recovery

***** Narrows the distribution and makes it more symmetric

- If the photon is not added to the lepton, then it is removed from the set of particles used to calculate the visible momentum
- * This also makes the recoil mass distribution more symmetric and closer to m_H

- * m_{vis} peaks higher than m_Z
- Could be due to confusion in PandoraPFA, where a neutral cluster close to a charged hadron is being added to the hadron, but its energy is already accounted for in the track
- This has not been definitively verified but may imply that PandoraPFA needs additional tuning for the CLD case

Results

Theory prediction $Br(H \rightarrow 4\nu) \sim 10^{-3}$

Limit set on $\mathcal{B}(H \to inv)$

Channels	-2σ	-1 σ	Limit	+1 σ	+ 2σ
ee	7.3×10^{-2}	9.9×10 ⁻²	1.4×10^{-1}	2.0×10^{-1}	2.8×10^{-1}
μμ	2.3×10^{-2}	3.2×10^{-2}	4.5×10^{-2}	6.4×10^{-2}	8.7×10 ⁻²
qq	3.5×10^{-3}	4.7×10^{-3}	6.5×10^{-3}	9.1×10 ⁻³	1.2×10^{-2}

≻ Signal: Z(mumu, ee, qq)H(ZZ→4nu)
≻ Bkg: ZH, ZZ, WW

Preliminary results

- The limit is obtained by fitting the recoil mass distributions
- The background components (WW+ZZ+ZH) are combined
- ✤ To combine Fast and Full Sim, Full Sim channels are vetoed in the fast sim samples.
- The best limit is obtained with qq final state and ee final state is the worse limit

Ang Li

Detector Variation

Z→qq, H→inv. ZH+ZZ 86 GeV< M_vis < 96 GeV

Preliminary results

Limit on the Higgs to invisible branching ratio for each configuration

Limit set on $\mathcal{B}(H \to inv)$								
Detector config	-2σ	-1σ	Limit	+1 σ	+2 σ			
baseline	3.5×10^{-5}	4.7×10^{-5}	6.7×10^{-5}	9.5×10 ⁻⁵	1.3×10^{-4}			
0p3BetterEResolution	3.1×10^{-5}	4.2×10^{-5}	6.0×10^{-5}	8.6×10 ⁻⁵	1.2×10^{-4}			
0p3WorseEResolution	3.3×10^{-5}	4.6×10^{-5}	6.5×10^{-5}	9.2×10 ⁻⁵	1.3×10^{-4}			
2LessGranularCalo	3.7×10^{-5}	5.0×10^{-5}	7.1×10^{-5}	0.000101	1.4×10^{-4}			
2MoreGranularCalo	3.5×10^{-5}	4.8×10^{-5}	6.7×10^{-5}	9.6×10 ⁻⁵	1.3×10^{-4}			
idealVXDCalo	2.9×10^{-5}	3.9×10 ⁻⁵	5.6×10^{-5}	7.9×10^{-5}	1.1×10^{-4}			

Different calorimeter properties:

- baseline IDEA calorimeter
- > 30% better relative energy resolution
- 30% worse relative energy resolution
- two times more granular calorimeter
- > two times less granular calorimeter.

Summary

- \checkmark A study on the Higgs \rightarrow inv at \sqrt{s} = 240 GeV is presented
- ✓ A combination of fast and full simulations is used
- \checkmark The recoil mass is fitted to set limit on B(H \rightarrow inv)
 - > The best limit is obtained with qq channel, while ee shows the worst limit results.
- A comparison on the lepton reconstruction between CLD full simulation and Delphes simulations of CLD and IDEA is shown
 - > A study of the efficiency and resolution are performed for this comparison.
 - > A nearly identical efficiency is observed for IDEA and CLD fast sim.
 - Electron efficiency is worse for full sim than for fast sim, especially at low pT

✓ The crossing angle effect is also studied

> boost in the negative x direction by $\beta = \sin(\frac{\theta}{2})$

✓ Bremsstrahlung recovery:

Recoil mass shape become more symmetric

✓ Detector variation

Backup

