

Preliminary Electromagnetic and Mechanical Design of a Cosθ Dipole for the Muon Collider Project

F. Mariani^{1,2}, L. Alfonso³, A. Bersani³, L. Bottura⁴, B.Caiffi³, S. Mariotto^{2,5},

D. Novelli^{1,3}, S. Farinon³, A. Pampaloni³, T. Salmi⁶, S. Sorti^{2,5}

¹ Università La Sapienza Roma

- ² INFN LASA Milano
- ³ INFN Sezione di Genova

⁴ CERN

⁵ Università degli Studi di Milano

⁶ Tampere University

Funded by the European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

The Muon Collider

IMCC (International Muon Collider Collaboration) aims at studying the feasibility of a **10 km**, **10 TeV** center of mass energy Muon Collider.

Motivation & Magnet Requirements

coils

Motivation

MuCol

nternational JON Collider

A preliminary **electromagnetic** and **mechanical** study of $\cos\vartheta$ dipole magnet taking into account **non-uniform** current distribution.

REQUIREMENTS

- *bore aperture* = 140 *mm*
- $B_d = 16 \text{ T}$ • $T_{op} = 20 K$

• $\Delta T_{marg} = 2.5 K$

HTS techonology is needed!

Tape: REBCO (12 mm) Fujikura FESC tape

Tape & Cable

*2 Artificial pinning specification for use at low temperature and high magnetic field *3 Ic@20K, ST is a reference value and no guarantee of the actual performance.

HTS vs LTS technology

J distribution according to Brandt Model (1)

When the tape is immersed in a magnetic field region, a screening current (I_{screen}) originates inside it to cancel the inner perpendicular field, starting from the edges.

As the field increases, I_{screen} penetrates towards the center of the tape.

J distribution according to Brandt Model (2)

If a transport current I_t flows along the tape, we need to distinguish between 2 scenarios:

Limitations of the model

and Mitigations adopted

 The model considers only a single tape, whereas the dipole magnet is made of thousands of tapes.

 Iterative solution was performed to consider how each tape is affected by the current distribution of the others. The model assumes a single value of *B*_⊥ in which the tape is immersed.

 B_⊥ averaged along each tape is taken as the uniform field in which the tape is immersed.

ELECTROMAGNETIC STUDY

Field & Current distribution

MInternational UON Collider Collaboration

Y [mm]

MuCol

Preliminary Electromagnetic and Mechanical Design of a Cos-Theta Dipole for the Muon Collider Project / Francesco Mariani / Università La Sapienza and INFN LASA

INFŃ

Mechanical Study Assumptions

- 0.13 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.06 0.12 0.14 0.16 0.02 0.04 0.08 0.1 0
- 2 different mechanical studies:
 - 1) Bounded layers
 - 2) Frictionless layers (with separation)
- Infinitely rigid collar
- Frictionless contact between collar and layers
- Young modulus of layers E=174 GPa
- Wedges material \rightarrow copper

Conclusion & Perspectives

- A cos dipole magnet entirely designed with HTS technology needs to account for non-uniform J distribution.
- The non-uniform J distribution calculation based on Brandt model allowed to evaluate the **losses** taking place during the ramping time and how **field quality** is affected by magnetization.
- For the moment, the margin requirement of 2.5 K is not fulfilled in the first layer. However:
 - 1. High margin in outer layers.
 - 2. Iron contribution.
- The tensile stress at the top of the magnet must be cancelled, whereas the compressive stress on the midplane needs to be compensated/reduced by appropriate structures (stress management could be a valid solution).
- Further improvement of code for current distribution evaluation will be performed to obtain more accurate results. Mechanical study will be further developed to find appropriate solutions to assure mechanical stability.

- Computational time **optimization** of the analytical code and **improvement** of the Brandt Model:
 - a) J distribution inside a tape immersed in non-uniform B.
 - b) Not only first magnetization study.
- Validation with a fem software (e.g. COMSOL) starting from a simple $\cos\theta$ geometry (sector coil 60°) and considering "H" formulation.
- Further validation with more complex geometries using "T-A" or "J-A" formulations (coil homogenization to reduce computational time).

Thank you

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Backup Slides

Mechanical Study

UON Collider Collaboration

Stress on Midplane & Deformation

Difference on midplane stress between bounded and frictionless layers:

- Maximum compressive stress in layer 4 in case of bounded layers.
- Maximum compressive
 stress in layer 3 in case
 of frictionless layers.

Preliminary Electromagnetic and Mechanical Design of a Cos-Theta Dipole for the Muon Collider Project / Francesco Mariani / Università La Sapienza and INFN LASA

tape quantity and cost

■ Total tape quantity = $10.736 Km/m \rightarrow$ Total cost of tape = $6441.6 \in /m$

Block n.	Cable length (per meter)	Block n.	Cable length (per meter)
1	182	10	270
2	182	11	240
3	106	12	300
4	76	12	116
5	220	15	440
6	190	Layer n.	Cable length (per meter)
7	170	1	546
8	32	2	612
0	270	3	780
9	270	4	746

Field quality uniform nominal current

Preliminary Electromagnetic and Mechanical Design of a Cos-Theta Dipole for the Muon Collider Project / Francesco Mariani / Università La Sapienza e INFN LASA

ĪNFŇ

J uniform

J non uniform

Deformation

J uniform

J non uniform

Radial stress

Bounded layers

Unbounded layers

Preliminary Electromagnetic and Mechanical Design of a Cos-Theta Dipole for the Muon Collider Project / Francesco Mariani / Università La Sapienza e INFN LASA

27

RFMF test station manget p.o.v- M. Statera et al. UMIL&INFN

21 June 2023

Stress on Midplane

heat intercept

- Beam aperture (5σ)
- Cu layer beam screen
- Tungsten absorber
- Insulation space
- Heat intercept
- Insulation space
- Beam pipe
- Kapton insulation
- Clearance
- Coil pack*
- *thickness TBD, placeholder

23.5 mm radius 0.01 mm thick 40 mm thick 5 mm thick 1 mm thick 3 mm thick 0.5 mm thick 1 mm thick (60 mm thick)

