

September 1 - 6, 2024, Salt Lake City, Utah

MuCo

Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider

Funded by the European Union

> B. Bordini, C. Accettura, A. Bertarelli, L. Bottura, A. Dudarev, M.A. Hafiz, A. Kolehmainen, T. Mulder, D. Rinaldoni, F. Sanda, G. Vernassa, A. Verweij, M. Wozniakc

Introduction

- The Muon Collider & its Final Cooling Channel
- The Final Cooling Solenoids and the proposed conceptual design
- Design and studies for the final cooling solenoid
 - Advancing on the: engineering Design and; mechanical analysis
 - Studying the effects of magnetization and quenches on mechanics
 - Protection studies and development of new electrodynamics models

Some Experimental Activities

- Technological Studies
- Macro & Micro mechanical characterizations
- Critical current measurements on procured ReBCO tapes

The Muon Collider Final Cooling Channel

 The final cooling solenoids are part of the final cooling channel, which is constituted by several cooling cells

• 16 were proposed by the MAP study

A layout schematic of **16 cells** of the **final cooling channel** defined by the MAP study (Sayed et al. Phys. Rev. ST Accel. Beams **18**, 091001). The coloured boxes in the top represent the **cooling cells**. The bottom figures show a sample of the on-axis field of the strong focusing solenoid; the shaded areas show the corresponding absorbers lengths.

CFR

Cross section of 45 T, 32 mm • NHFML user facility solenoid

1680 mm

In the world, only **two solenoids** (at **NHFML** and **CHFML**) **B** ≥ 40 **T** in a free bore aperture (32 mm) **comparable** with what needed for **FC** solenoids

ION Collider

llaboration

- For both, outermost winding diameter ~1.7 m
- Hybrid Magnets: 33.5/29 T from resistive insert, 11.5/11 T by superconducting outsert
- their large power consumption (20-30 MW) is unacceptable for accelerator magnets

- Main specs used for the CERN conceptual design
 - B ≥ 40 T, aperture φ ≥ 50 mm,
 - field homogeneity 1 % over 0.5 m
 - Energizing time 6 hrs and persistency 0.1 Units/s

ASC24, Salt Lake City - 02.09.24 Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider – B. Bordini

Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider - B. Bordini

Mechanical Analysis 2 D FEM : geometry

- Mechanical Simulation of a modular coil: all 750 coil windings are represented
- The Joint rings and the coil are wound with 80 μm thick tapes (50 μm Hastelloy, 30 μm Cu)

Mechanical Analysis 2 D FEM: ~200 MPa Pre-compression

Inner Joint ring thickness	Pre-compression at cold	Min/Max <i>Radial</i> stress [MPa]			Min/Max <i>Hoop</i> Strain [%]		
[mm]	[MPa]	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3
0.5	170						

ASC24, Salt Lake City - 02.09.24

Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider - B. Bordini

Mechanical Analysis 2 D FEM : four Case Studies

Inner Joint ring thickness [mm]	Pre-compression at cold [MPa]	Min/Max <i>Radial</i> stress [MPa]			Min/Max <i>Hoop</i> Strain [%]		
		Step 1	Step 2	Step 3	Step 1	Step 2	Step 3
0.5	170	-205/-8	-190/-5	-290 / <mark>10</mark>	-0.25 /-0.10	-0.20 /-0.12	-0.04/ 0.28
0.5	250	-318/-12	-258/-8	-367/ <mark>7</mark>	-0.39 /-0.17	-0.31 /-0.16	-0.09/ 0.18
1	170	-205/-14	-190/-10	-288/19	-0.25 /-0.10	-0.2 /-0.12	-0.05/ 0.29
I	250	-320/-21	-259/-15	-366/13	-0.39 /-0.17	-0.3 /-0.16	-0.09/ 0.18

Mechanical **loads** are **under control** (in **stationary** operating **conditions** and **neglecting** the **solenoid heads** where the conductor get **magnetized**)

See Accetura et al. Poster 2LPo1B-03

ASC24, Salt Lake City - 02.09.24 Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider – B. Bordini

Electro-Mechanical Analysis 2 D FEM – Magnetization in Operation $||J \times B|| / GN m^{-3}$

We study the mechanic, 2 200 with a detailed model to the tapes' scale 100 Coils Electro dynamics with **T-A Formulation** 1 -100

-200

G. Vernassa

ASC24, Salt Lake City - 02.09.24

Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider – B. Bordini

Electro-Mechanical Analysis 2 D FEM – Magnetization in Operation $\|\mathbf{J} \times \mathbf{B}\| / \mathbf{GN} \ \mathbf{m}^{-3}$ Significant Increase of max hoop strain ~30% 200to be considered striated tapes as in magnet heads 100 0 1 Increase of max hoop strain -100negligible ~1% -200 G. Vernassa

Coils Electro dynamics with T-A Formulation

ASC24, Salt Lake City - 02.09.24

Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider – B. Bordini

Integrated Mechanical-Electrodynamic simulations

- ✓ Magnet's turn-to-turn resistance used as internal quench heater.
- ✓ Good distribution of dissipated stored energy and a resulting peak temperature of below 200 K.
- ✓ No large induced currents, mechanically favorable solution.

ASC24, Salt Lake City - 02.09.24 Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider – B. Bordini

3D electrodynamic models 40 T Solenoid - Energization

40 35

30

25 20

15

10 5

Assumptions:

- **Infinite** number of identical **3D** pancakes
- Coil winding thickness 6 cm
- **Conductor** made of **two tapes** (total thickness 160 µm)
- 750 layers of conductor
- Tape width **12 mm**
- contact resistance, **10** $\mu\Omega$ cm²
- **2 mm** of air between coils

Only 1 hour computational time in a 2 k\$ PC !!!

D. Rinaldoni

40

Axial Magnetic Field in the center and Input Current

nput Current (A)

3D electrodynamic models 40 T Solenoid – Current Distribution

D. Rinaldoni

Large Current margin: the current density along the superconductor is less then 40 % of the critical current

ASC24, Salt Lake City - 02.09.24 Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider – B. Bordini

Technological Studies Fully soldered pancake

M. A. Hafiz

Enorgization	$ au_{c}\left(s ight)$			
Current	Before Etching	After Etching		
5 A	4.9	0.042		
10 A	4.7	0.041		
20 A	4.8	0.030		
50 A	4.6	0.052		

Single pancake

Double pancake configuration to be tested in the coming days

ASC24, Salt Lake City - 02.09.24

Development of a ReBCO non/metal-insulated 40 T solenoid for the Muon Collider - B. Bordini

Macro-Mechanical Characterization

Stack Samples

(a) Relative change in length

(b) Coefficient of thermal expansion

Sample holder including two samples of the Fujikura FESC-SCH04 tape

Thermal expansion measured for two samples of the Fujikura FESC-SCH04 tape

Courtesy of Stefan Hoell & Oscar Sacristian de Frutos, CERN

ASC24, Salt Lake City - 02.09.24

Micro-Mechanical Characterization

Micropillars Splitting at 300 K

*See Vernassa et al. Poster 2MPo2C-08

Hastelloy	Copper
σ ^y ∕ GPa	σ ^y ∕ GPa
???*	???*

Micropillar compression on Hastelloy and Copper

ASC24, Salt Lake City - 02.09.24

ReBCO Tape Procurement & Electrical Characterization

Ready to GO

Designed and procured the components of a winding machine allowing hot winding of soldered pancakes; assembly is expected starting this week

Ready to start manufacturing and testing pancakes in 'series' !!!

And now 27-09-24 ... GO !

Y. S. Farys , Patrick Louis Bouvier, A. Dallocchio, M. Garlasche

ASC24, Salt Lake City - 02.09.24

Conclusions & Next Steps

- Many activities on going, mostly focusing on the main identified criticalities:
 - The **electro-mechanical** design → **stresses** on the **conductor** are very large
 - The electrodynamics and protection of the magnet → complex transients to control
- The project is challenging but no show-stoppers appeared so far and we are a growing team strongly motivated
- With the arrival of the winding machine, experimental activities and the manufacturing & testing of pancakes will significantly increase

Thank You For the Attention

