

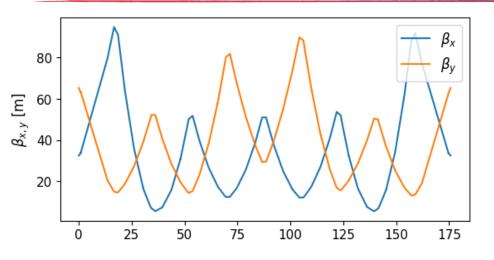
Progress on RCS Lattices: parameter table and apertures

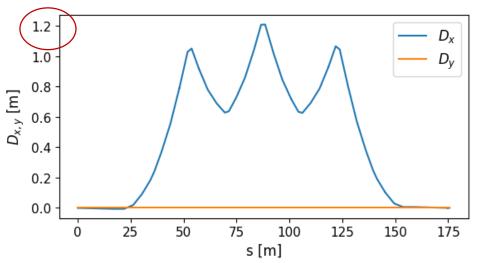
L. Soubirou, A. Chance Muon Magnets Working Group 10/10/2024

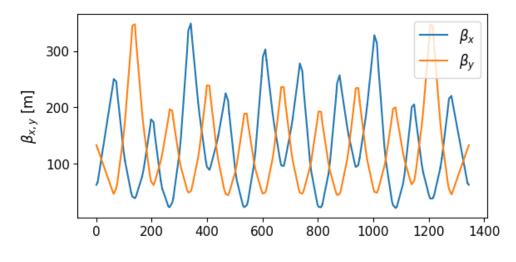
Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

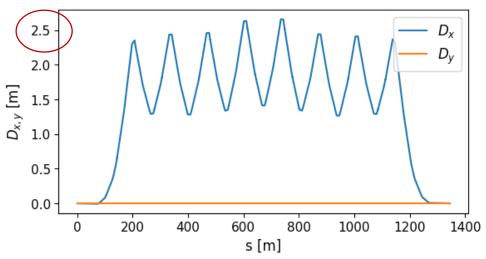
This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program (www.chart.ch).

Work on RCS geometry and lattices


- Work on geometry and lattices for the greenfield proposal
- Optimization of cell length L_c to get more feasible QP strengths: reduction of n_c
- Number of arcs remains unmodified (RCS 1: 32 arcs, RCS 2,3,4: 26 arcs)
- Generate the arc layout with a FODO structure :
 - > Allocate place for thick QP and SXT in the arcs and RF insertions
 - > Distribute remaining straight sections between the cells and RF insertions
- Dispersion suppressor for RF insertions
- Correct chromaticity to dqx = dqy = 5







High dispersion function : $D \propto L_{cell} \theta_{cell} \propto 1/n_c^2$

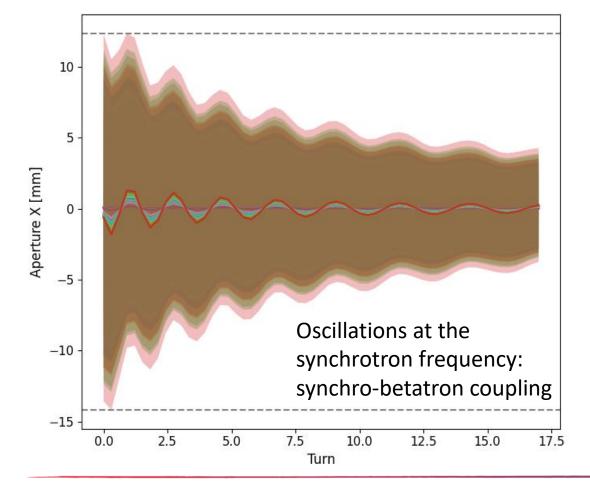
Throughout the 4 RCS, D goes from 1.2 m to 2.5 m

Parameter table

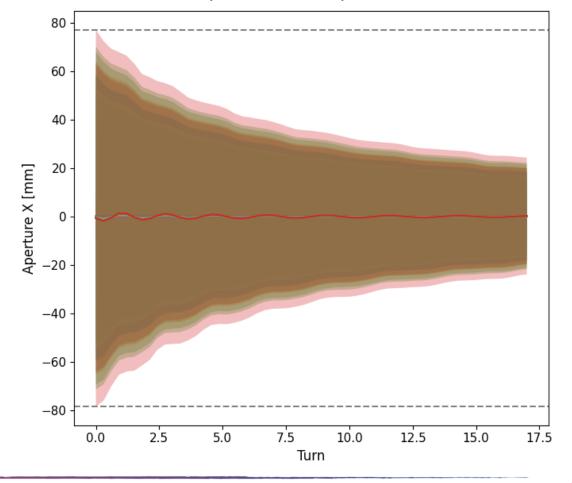
	D 00 .	7.00	D 00 0	T 00 .	cea irt
	RCS 1	RCS 2	RCS 3	RCS 4	
Type	Normal	Hybrid	Hybrid	Hybrid	
Circumference	5990	5990	10700	35000	
Number of arc	34	26	26	26	
Number of cells per arc	4	4	6	9	
Filling ratio arc	0.85	0.92	0.94	0.89	
Filling ratio dipole	0.37	0.61	0.63	0.70	
Pattern	NC, NC	SC, NC, SC	SC, NC, SC	2 bloc: SC, NC, SC) NC to a language to be
Length NC [m]	4.06	12.21	13.99	21.77	NC too long, to be
NC traj excursion [mm]	0	71.0	44.0	43.0	separated later
NC hor. aperture [mm]	174.3	142.1	93.1	83.2	•
Length SC [m]	-	2.68	3.78	2.27	Beam excursion
SC traj excursion [mm]	-	26.0	24.0	8.0	and beam size
SC hor. aperture [mm]	-	98.1	67.9	61.6	(from tracking)
Vertical aperture [mm]	42.1	33.0	28.2	29.6	(from tracking) +
Length QP [m]	1.89	3.49	4.98	9.16	20 mm of margin
Aperture min. QP [m]	177.3	79.6	64.7	63.1	(vacuum pipes)
Length SXT [m]	0.5	0.5	1.0	1.0	(vacaam pipes)
QP B_{pole} (ϕ 50 mm)	1.31	1.25	1.35	1.18	1 T recommended + large
SXT B_{pole} (ϕ 50 mm)	0.17	0.2	0.12	0.13	
Max path length diff. [mm]	0	49.6	21.0	59.7	QP apertures for RCS 1&2
Relative path length diff. [1e-6]	0	8.3	2.0	1.7	
MCF	0.0006	0.0011	0.0007	0.0002	
Qs	0.754	0.345	0.285	0.297	
Q_X	44.358	33.291	41.780	65.624	
Qy	31.563	23.069	35.694	58.604	
dQx	5.0	5.0	5.0	5.0	
dQy	5.0	5.0	5.0	5.0	

Table 1: Parameter table for the greenfield complex (FODO lattices)

RCS Lattices - L.Soubirou 4



Tracking studies for apertures : example for RCS1

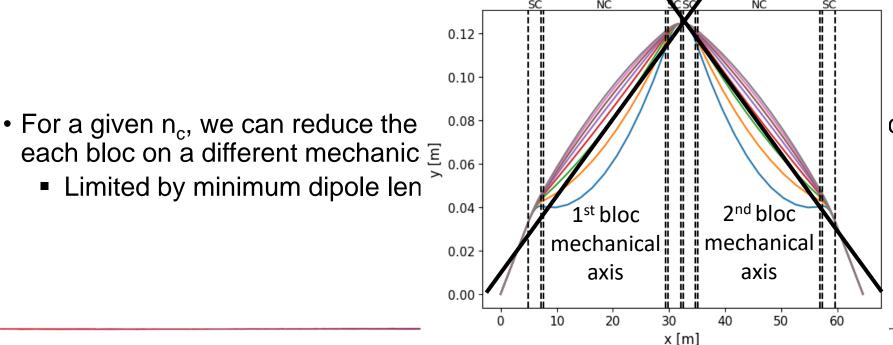


RCS₁

Aperture NC dipoles at 1σ

Aperture NC dipoles at 6σ

Larger apertures



Larger excursion than what we had in the previous estimations: fewer n_c cells per arc

■ Trajectory excursion in middle dipole : $\Delta y \propto 1/n_c^2$

• High dispersion function (D \propto L_{cell} · $\theta_{cell} \propto 1/n_c^2$) + high Δ E/E_{ini}

> bigger beam size

	ΔΕ/Ε _{ini} (at 99,5%)
RCS 1	2.75 %
RCS 2	0.61 %
RCS 3	0.34 %
RCS 4	0.32 %

cs and place

Conclusion

- First optics with thick elements for the RCS
- Quadrupoles with about 1T on the pole requires a large total length to focus the beam, resulting in a reduced number of cells per arc
- High dispersion function that greatly contributes to the beam size
- Initial tracking studies on each RCS showed no emittance growth

Next steps:

- ➤ Start-to-end simulations (RCS1 → RCS4)
- > Could consider alternative lattice (combined functions, bend achromat to reduce dispersion)