

Structural analysis of Final Cooling Solenoid Coil

C. Accettura, With several contributions from A. Bertarelli, B. Bordini, L. Bottura, A. Dudarev, A. Kolehmainen, F. Sanda

Muons Magnets Working Group

ttps://indico.cern.ch/event/1455031/

24/10/2024, CERN

- Introduction to the magnet design
- 2D FEM model
- Alternative configurations
- 3D assembly
- Outlook and future activities

----**,** ----

• Fully HTS

International UON Collider

- NI/Metal-insulated coil
- Tens of 'modular' and a few 'correction' pancakes
- 73 cm height 40 T solenoid 50 cm 1 % field homogeneity
- Pre-compression disk to limit the hoop strain on the tape

Introduction to the magnet design

40 T

 $\mathbf{\uparrow}$

632 A mm⁻²

н

Introduction to the magnet design

Conceptual design

- Internal/External joint ring: SC coil not exposed and connected to the electrical connection between pancake
- Soft interlayer to avoid transmission of axial force
- Support cap: to apply first precompression and intercept axial force
- Pre-compression-disk: to apply pre-compression

C. Accettura et al., Muons Magnets Working Group, 24/10/2024

2D FEM model

- 2D Mechanical Simulation of a modular coil: all 750 windings are represented
- The model accounts for: Cu yielding and; the thermal contractions of the different materials, inner and outer layer

Reference model results-1

- 200MPa pre-compression reached at 200°C
- Pre-compression decreased during cooldown

Inner Joint ring	Pre- compressi	P _{re-} Radial stress[MPa		Pa]		Shear Stress [MPa]				
thickness [mm]	on at cold [MPa]	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3
0.5	170	-205/-8	-190/-5	-290/10	-0.25 /-0.10	-0.20/ -0.12	-0.04/ 0.28	6	4.5	4
0.5	250	-318/-12	-258/-8	-367/7	-0.39 /-0.17	-0.31/-0.16	-0.09/ 0.18	10	6	5
4	170	-205/-14	-190/-10	-288/19	-0.25 /-0.10	-0.2/-0.12	-0.05/ 0.29	6	4	5
I	250	-320/-21	-259/-15	-366/13	-0.39 /-0.17	-0.3/-0.16	-0.09/ 0.18	10	6	5
(C. Accettura et a	al.,Muons Magn	ets Working	Group, 24/10)/2024				and the	The second second

Reference model results-2

1 /

- 200MPa pre-compression reached at 200°C
- Pre-compression decreased during cooldown
- High stress reached on the shell

Equivalent stress in the shell MAX/AVE [MPa]					
Step 1 Step 2 Step 3					
480/160 400/140 620/216					

30.00

45.00

60.00 (mm)

Alternative configurations-1

•	External	shell	made	of AI7075:
---	----------	-------	------	------------

- 130MPa pre-compression reached at 200°C
- Pre-compression increased during cooldown
- Shear stress comparable, buffer layer working well

	Inner Joint ring	Pre- compressi	Rad	ial stress[N	IPa]	H	oop Strain [%	6]	She	ear Stro [MPa]	ess
	thickness [mm]	on at cold [MPa]	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3
Steel	1	170	-205/-14	-190/-10	-288/19	-0.25/- 0.10	-0.2/-0.12	-0.05/0.29	6	4	5
AI7075	1	150	-144/-10	-172/8	-222/24	-0.17/- 0.07	-0.18/-0.1	-0.01/0.38	6	4	5

Alternative configurations-2

External shell made of Al7075:

- 200MPa pre-compression reached at 200°C
- Pre-compression decreased during cooldown
- High stress reached on the shell

	Equivalent stress in the shell MAX/AVE [MPa]					
	Step 1	Step 2	Step 3			
Steel	480/160	400/140	620/216			
AI7075	324/110	355/124	460/160			

C. Accettura et al., Muons Magnets Work

Alternative configurations-3

- Configuration 2 pre-compression disks:
 - Easier assembly of the support cup
 - Limited temperature close to the coil
 - Easier tolerances compensation

	Inner Joint ring	Pre- compress		Radial str	ess[MPa]		Н	oop Strain [%]	She	ear Str [MPa]	ess
	thickness [mm]	ion at cold [MPa]	Step 0	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	Ste p 1	Ste p 2	Ste p 3
Steel	1	170	-	-205/-14	-190/-10	-288/19	-0.25/- 0.10	-0.2/-0.12	- 0.05/0.29	6	4	5
AI7075	1	150		-144/-10	-172/8	-222/24	-0.17/- 0.07	-0.18/-0.1	- 0.01/0.38	6	4	5
Steel/Steel	1	175	-70/-5	-208/-14	-185/-10	-294/18	-0.25/- 0.11	-0.21/- 0.12	- 0.05/0.28	4	7	5
Steel/AI7075	1	154	-70/-5	-155/-11	-159/-8	-262/20	-0.19/- 0.09	-0.18/- 0.10	- 0.03/0.32	4	4	5

Type: Equivalent (von-Mises) Stress Unit: MPa

Deformation Scale Factor: 0.0 (Undeformed)

Time: 4 s Custom

Max: 468.66 Min: 215.03

24/10/2024 11:11

468.66

440.48 412.3

384.12

355.93

327.75 299.57

271.39

243.21

215.03

Alternative configurations-4

	Equivalent stress in the shell MAX/AVE [MPa]						
	Step 0	Step 1	Step 2	Step 3			
IN-Steel	187/115	240/150	220/130	370/214			
OUT-Steel	-	470/312	400/265	470/310			

	Equivalent stress in the shell MAX/AVE [MPa]						
	Step 0	Step 1	Step 2	Step 3			
IN-Steel	187/115	199/113	195/116	360/207			
OUT-AI	-	290/195	325/217	356/240			

- 1- --

3D assembly

- We need to consider the shape of the support cup
 - Intermediate plate circumferential stiffness causes non-uniform precompression of the coil

Groves optimization

Groves introduced to reduce the stiffness

Coil material (Hastelloy_50+Copper_30) 2

Shell

C. Accettura et al., Muons Magnets Woi

Outlook and future activities

- The design of the shrink-fitting process has been reviewed to optimize the fabrication
 - A 2-shell concept is applicable and could facilitate the assembly
- A 3D modelling is required to simulate the final design. First studies indicate that the application of grooves on the support cup is needed to make the pre-compression uniform on the coil surface

Stress and Strain in the coil

2D layered vs homogeneous

Groves optimization

Introduction and Motivations

- - P_M=B₀²/2µ₀~600MPa
 - Hoop stress~ 1.4-2.2P_M (compact coil)

<u>solenoids, IMCC Annual Meeting 2023, Orsay</u>

Introduction and Motivations

- Design proposed for the Final Cooling solenoid based on single and compact coil \rightarrow critical stress management:
 - $P_M = B_0^2 / 2\mu_0 \sim 600 MPa$
 - Hoop stress~ 1.4-2.2P_M (compact coil)
- Non-homogeneous and anisotropic material:
 - Maximum allowable stress very weak in certain direction
 - Scarce literature
 - Reduced safety margin

Reference Conductor Fuilkura FESC-SH12. https://www.fujikura.co.jp/eng/products/newbusiness/superconductors/01/superconductor.pdf

See B. Bordini, Technology options for the final cooling solenoids. IMCC Annual Meeting 2023. Orsav

Pre-compression

- How to obtain the pre-compression?
- Mechanical concept is based on encapsulating HTS pancake coils in an external structure, generating high radial compressive stresses. Three concepts analysed:
 - 1. Thermally-induced shrink fitting
 - 2. Adjustable shrink-discs with conical surfaces
 - 3. Hybrid solution (1+2)

Shrink Fitting

^{aborati}Coil surrounded by a cylindrical shell with r_{in_shell}<r_{ext_coil}

- Shell is pre-heated \rightarrow fitting of the coil inside \rightarrow cool-down of the shell and thermal contraction
- Simple analytical evaluation: $\sigma_{hoop} = 500 \text{MPa} \rightarrow 200 \text{MPa} \rightarrow \text{interference gap} \sim 220 \mu \text{m} \rightarrow \text{Tshell} \sim 170^{\circ}\text{C}$

$$\sigma_{\theta} = -\frac{\rho^2 + \beta^2}{\rho^2} \frac{1}{1 - \beta^2} p_e$$

$$\delta = \delta_{i2} - \delta_{e1} = \left[\frac{1}{E_2} \left(\frac{1+\beta_2^2}{1-\beta_2^2} + v_2\right) + \frac{1}{E_1} \left(\frac{1+\beta_1^2}{1-\beta_1^2} - v_1\right)\right] r_{e1} p_f$$

- Some practical aspects must be considered:
 - Differential contraction during cooldown
 - Strength of the cylinder
 - Impact of the joints
 - Plasticity
 - Mechanical tolerances: 1MPa/µm lost
 - Buckling
 - C. Accettura et al., Muons Magnets Working Group, 24/10/2024

FEA simulations at different levels of complexity

Assumptions

- Electromagnetic Forces
 - Ideal Solenoid ($J_{ideal} = \frac{B_{MAX}}{\mu_0(r_{co} r_{ci})} = 531 \text{ A/mm2}$)

• Real Solenoid (
$$J_{real} = J_{ideal} \frac{t_{coil} + t_{supportplate}}{t_{coil}} = 620 \text{ A/mm2}$$
)

23

C. Accettura et al., Muons Magnets Working Group, 24/10/2024

25

- the in the

Validity of homogeneous model

Step 1: Shrink fitting (T external shell =250°C)

 $\sigma_{\text{Transverse,Average}}\text{=-}210\text{MPa}$

27

Effect of the inner joint properties

Let the ring detach to limit radial tensile stress

Max: 73.473 Min: -502.27 Deformation Scale Factor: 0.0 (Undeformed) 06/12/2023 11:52

Max

G: CorrectCuCTE_MPC_750layers_elastic_OnlyCuPlastic_Hastelloy+SoftCu INSIDE_HardCu+Hastelloy OUTSIDE_Orthotropic_1supportfrictionless_FRICTIONLESS_2D_axyal X Axis - Normal Stress - All layer+1 - 3, s

06/12/2023 11:52 73.473

-62.784

-125.57

-188.35

-251.14

-313.92

-376.71

439.49

-502.27

Effect of the tape plasticity

Collaboration $\sigma_{\rm v}$ -radial[MPa] ε_z-hoop step min max ave max -289 -57 -210 -164 (200*) 2 -224 -67 3 -416 -213 0.30% 77 -308 -54 -214 1 2 -171 (210*) -272 -63 3 0.22% -502 73 -224

Plastic

Elastic

*Average on the external edge

30

L: openingring_CorrectCuCTE_MPC_750layers_plastic_OnlyCuPlastic_Hastelloy+SoftCu INSIDE_HardCu+Hastelloy OUTSIDE_Orthotropic_1supportfrictionless_FRICTIONLESS_2D_axyalsym_1coil_coc

MInternational UON Collider

Effect of the tape properties

	σ	ε _z -hoop		
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171 (215*)	
3	-484	75	-218	0.24%
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%

Experiments and FE modeling of stress–strain state in ReBCO tape under tensile, torsional and transverse load

- - ---

To cite this article: K Ilin et al 2015 Supercond. Sci. Technol. 28 055006

Reference

*Average on the external edge

Effect of the tape properties

	σ	_x -radial[MPa	a]	ε _z -hoop
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171(215*)	
3	-484	75	-218	0.24%
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%
*Average on the e	xternal edge			

-1-

Effect of the tape properties

	σ	a]	ε _z -hoop	
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171(215)	
3	-484	75*	-218	0.24%

*Localized effect

-1- :

C. Accettura et al., Muons Magnets Working Group, 24/10/2024

33

Reduced Hastelloy (1mm-Bonded to Cu)

ε_z=0.22% 🗹

Geometry 01/02/2024 10:44

Copper hard Copper soft Copper tape Hastelloy Hastelloy tape Shell

-1-

4

Hastelloy orthotropic				
Ex-radial[GPa]	Ey,z-hoop[GPa]			
100 200				

ε_z=0.17% 🗹

- - - -

35

σ_x=12MPa ⊠

-1-2

3D model more time-consuming, homogeneous material and mesh to be refined → INCREASE OF at least~50% expected

ε_z=0.18% 🔄

Geometry

01/02/2024 09:55

Copper hard

Copper soft Hastelloy Shell

Coil material (Hastelloy_50+Copper_30)

Type: Normal Elastic Strain(Y Axis) Unit: mm/mm Coordinate System 3 Time: 2 s Max: 0.0018075 Min: -0.00038037 Deformation Scale Factor: 0.0 (Undeformed) 01/02/2024 10:00

Cooling channel

X Axis - Normal Stress - Coil - 3. s Type: Normal Stress(X Axis) Unit: MPa Coordinate System 3 Time: 2 s Custom Max: 38.188 Min: -401.82 Deformation Scale Factor: 0.0 (Undeformed) 01/02/2024 09:56 38.185

σ_x<20MPa

Shrink Fitting

aboraticoil surrounded by a cylindrical shell with rin<rext_coil

- Shell is pre-heated \rightarrow fitting of the coil inside \rightarrow cool-down of the shell and thermal contraction
- Simple analytical evaluation: $600MPa \rightarrow 200MPa \rightarrow interference gap ~300\mu m \rightarrow ~250^{\circ}C$

 $\sigma_{\theta} = -\frac{\rho^2 + \beta^2}{\rho^2} \frac{1}{1 - \beta^2} p_e$

$$\delta = \delta_{i2} - \delta_{e1} = \left[\frac{1}{E_2} \left(\frac{1 + \beta_2^2}{1 - \beta_2^2} + \nu_2\right) + \frac{1}{E_1} \left(\frac{1 + \beta_1^2}{1 - \beta_1^2} - \nu_1\right)\right] r_{e1} p_f$$

- Some practical aspects must be considered:
 - Differential contraction during cooldown
 - Strength of the cylinder
 - Impact of the joints
 - Plasticity
 - Mechanical tolerances: 2MPa/µm lost
 - Buckling
 - C. Accettura et al., Muons Magnets Working Group, 24/10/2024

FEM simulations at different levels of complexity

Mechanical considerations - Second concept

- 2 Load Steps:
 - Shrink Disk displacement (5 mm)
 - Energization
- Max. Hoop Stress (after energization): 620.4 MPa
- Max. Hoop Strain (after energization):
 0.344 %
- Shear Stresses globally lower than 15 MPa
- However, locally they can reach after energization ~ |30| MPa

Mechanical considerations - Third concept

- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2. Shrink Disk Displacement (2.2 mm); 3. Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598 MPa
- Max. Hoop Strain after energization: 0.332
 %
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa

Mechanical considerations - Third concept

- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2. Shrink Disk Displacement (2.2 mm); 3. Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598 MPa
- Max. Hoop Strain after energization: 0.332
 %
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa

eel o) ecial Metals :d	URI: N07710		ANSYS 2020 R2
	REBCO conductor		
	Axial tensile stress	700MPa	
	Axial tensile strain	0.4%	
	Transverse compressive stress	>100MPa	
	Transverse tensile stress	10-100MPa	
	Max shear stress	>19MPa	

Preliminary is ok, but limited safety margins –
 Fundamental to have a good understanding of the material limits and failure mode

- σ_{hoop} ~-600MPa reached on the inner radius of the coil
- The required compression is achieved with 10 M16 bolts
- System equipped with strain gauges and digital image correlation to characterize the coil

Conclusion and next step

- The final cooling solenoid requires a pre-compression to operate at 40T:
 - Shrink fitting, mechanical jigs or a combined solution can provide the required pre-compressions
 - Tape properties impacting the results
 important to benchmark them with experimental tests
 - The design of the inner and outer rings is critical: some possible solutions identified, more modelling work is needed to finalize the design
 - Different FEM models ready to investigate more options
 - Extensive work of design of the tooling for the experimental characterization of the tape C. Accettura et al., Muons Magnets Working Group, 24/10/2024

Validity of homogeneous model

Hastello

Competing 50 1 argenties: 30μm+50 μm

 $\sigma_{\text{Transverse,Average}}$ =-85MPa

Coil material (Hastelloy_50+Copper_30)

Copper hard

UON Colline Hastelloy Collaborati 🗖 Shell

Validity of homogeneous model

UON Colline Hastelloy Collaborati shell

Copper hard

Coil material (Hastelloy_50+Copper_30)

Step 1: Shrink fitting (T external shell =250°C)

20.000 (mm)

 $\sigma_{\text{Transverse,Average}}$ =-210MPa

0.000

Why thick shell?

46

Homogeneization

- Radial direction → springs in series
- Tangential direction → springs in parallel

$$E_{radial} = \frac{E_{Cu} \cdot t_{Cu} + E_{Ha} \cdot t_{Ha}}{t_{tot}}$$
$$E_{tangential} = t_{tot} \cdot \left(\frac{t_{Cu}}{E_{Cu}} + \frac{t_{Ha}}{E_{Ha}}\right)^{-1}$$

C. Accettura et al., Muons Magnets Working