

<u>Quantum Graph Neural</u> <u>Networks for HEP</u>

Master Thesis presentation

Thibault Desrousseaux

Supervisor: Prof. Dr. G. Dissertori

Co-supervisor: Vasileios Belis

Introduction

- Two projects:
 - Computation of Feynman diagrams
 - Jet classification
- Goals:
 - Explore potential applications of Quantum Graph Neural Networks (QGNN) for HEP
 - Study QGNN properties, when combined with other methods (data reuploading, equivariance...)

<u>Computation of Feynman</u> <u>diagrams</u>

Aim of the project

- Compute scattering amplitude $|\mathcal{M}|^2(G, p, \theta)$
 - Using a classical/quantum neural network
- Two goals:
 - Compute several diagrams with the same model
 - Combine diagrams to compute the total amplitude

Previous Work

- Classical approach: Mitchell & al.
 - Consider Feynman diagrams as graphs:
 - Edges: particles
 - Nodes: flow of time
 - Use classical graph ML methods (GAT+FNN) to compute the scattering amplitude
 - Limit:
 - They don't try to compute different amplitudes with the same model
 - They don't combine amplitudes when they want add diagrams

- Quantum approach: L. Ballerio
 - Encode the graph structure in a quantum circuit (feature map)
 - Trainable ansatz and observable
 - Idea: amplitudes add with interferences, like quantum systems

S-channel

As for the classical model, combined training do not work

Algorithm and results

- New ideas:
 - Use data reuploading:
 - Equivalent in simple cases to adding frequencies to the Fourier decomposition of the target function
 - Use of one trainable observable per channel

• How does the model improve with the number of reuploads?

- Which information in the encoding is *really* important?
 - Keep only the topology of the graph
 - Training works

- Is this encoding just a fancy switch?
 - Change the encoding into an angle encoding
 - The model do not train correctly

- Can the encoding work if the topology is the same?
 - Use $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \mu^+\mu^-$:
 - The model trains

• Is it possible to reproduce the results with the classical NN?

<u>Computing the total amplitude?</u>

- Original hope: the algorithm would produce a state corresponding to the complexe amplitude: $|\mathcal{M}_s\rangle$ or $|\mathcal{M}_t\rangle$
- Squared amplitude: $|\mathcal{M}_s|^2 = \langle \mathcal{M}_s | O | \mathcal{M}_s \rangle$
- Total amplitude (using LCU):

$$|\mathcal{M}_s + \mathcal{M}_t|^2 = \frac{1}{2} \left(\langle \mathcal{M}_s | + \langle \mathcal{M}_t | \right) O\left(| \mathcal{M}_s \rangle + | \mathcal{M}_t \rangle \right)$$

- However:
 - Complexe amplitudes actually depend on the spins
 - There is a extra degree of freedom (relative phase)

- New QGNN able to perform both classification and regression at the same time
- Graph encoding combined with data reuploading is a promising method
- Showed that computing the total amplitude won't work
- Could we apply this algorithm to other problems?

Jet Classification with a hybrid equivariant neural network

- Task: classification of five types of jets: q,t,W,Z,g
- 6 constituents per jet, for each constituent: p_T , η , ϕ
- Inspired of an article by Moreno & al.
 - Graph structure :
 - Fully connected graph
 - Node: constituent
 - Edge: concatenation of the parameters of the two constituents

 For a group G, a function f is G-equivariant with respect to its representations ρ and ρ' if:

$$\forall g \in G, f \circ \rho(g) = \rho'(g) \circ f$$

- Less restrictive than invariance
- Recipe for the permutation group for qubits:
 - 1-qubit gate: apply it on all qubits
 - 2-qubit gate: apply it on all pairs of qubits

The Hybrid Algorithm

- FNN applied to the edges
 - Transform the edge information for the quantum circuit
 - One hidden layer
 - The same FNN for all the edges
- The resulting graph is encoded in 5 different quantum classifiers
 - With data reuploading, and invariant observables
- The whole algorithm is permutation-equivariant

The Classical layers

LAYER

INPUT

LATENT REPRESENTATION

- Dimension:
 - Input: 6
 - Hidden layer: 12
 - Latent representation: 6

The Quantum Classifier

Ansatz

<u>Results</u>

- Size of the dataset:
 - S=1000/10000
- Number of reuploads:
 - N_R=3/5
- Equivalent MLP: 47% accuracy

Model	Loss	Accuracy	Training time
$S = 10000, N_R = 3$	1.5454	0.5037	$2.724 \mathrm{~days}$
$S = 10000, N_R = 5$	1.5397	0.5269	$8.151 \mathrm{~days}$
$S = 1000, N_R = 3$	1.5547	0.4747	14.84 h
$S = 1000, N_R = 5$	1.5590	0.4929	1.152 day

 $acc(x, y) = 1(\operatorname{argmax}(x) = \operatorname{argmax}(y))$

- Two projects that illustrate the potential of reuploading for QGNN
 - In the case of Feynman diagrams: much better results than the other existing methods
 - Jet classification: need some more work to compare its performances to other methods

