

Chordoma treatments at CNAO

MARIA ROSARIA FIORE

Chordoma characteristics

Rare tumor

Radioresistant tumor

Locally aggressiveness

Slow growing

Site of origin: > 50% sacrum, followed by skull base, mobile spine.

Peculiar aspect is the proximity to structures deputed to relevant functions

Chordoma

Therapeutic strategies are still challenging

Surgery remains the main therapy

- Complete resection R0→skull base
- En bloc resection \rightarrow mobile spine
- Wide margin resection → sacrum
 Strongly improve local control

Complete resection is not always possible

Chordoma

Particle therapy

Well konwn as radioresistant tumors

High dose required for local control improvement

Dose-limiting structures (brainstem, optic pathway spinal cord, kidney, bowel....)

For complex shaped and large tumor ,"Sculpting" of the dose distribution by protons and carbon ions are necessary

Guideline for sarcoma

Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical

Practice Guideline for diagnosis, treatment and follow-up

SPECIAL ARTICLE

«Heavy particle should be considered»:

• **Osteosarcoma**: unresectable or adjuvant for high risk of LR

Chordoma: if R0 resection is not feasible

• **Chondrosarcoma**: unresectable primary or recurrent after incomplete surgery

National Comprehensive Cancer Network* NCCN Guidelines Version 2.2023 <u>Table of Contents</u> Discussion PRINCIPLES OF RADIATION THERAPY

ANNALS OF

2021

General Principles

Patients should be strongly encouraged to have RT at the same specialized center that is providing surgical and systemic interventions.
 Specialized techniques such as intensity-modulated RT (IMRT); particle beam RT with protone, carbon ions, pr other heavy ions; or stereotactic radiosurgery (SRS) should be considered as indicated in order to allow high-dose therapy while maximizing normal tissue sparing.

Nowday the use of CIRT is recognised in international guide lines

ESMO 2021 european guidelines where «Heavy particle should be considered». For all of 3 histology mainly for unresectable tumors

Particle therapy for Chordoma @CNAO from 2012 Protons and carbon ion beams available

Chordoma treatments by site

- Surgery first: maximal safe resection or separation surgery from critical structures (brainstem/chiasm) based on shared strategy
- Adjuvant radiotherapy: well defined indication even in case of R0
- High Dose Particle therapy >70Gy(RBE), has been historically employed to overcome dose-limiting structures
- Data confirm that particle therapy achieve adequate target coverage in the skull base for prescription doses in excess of 70 Gy(RBE)

Study	Particle	Patients (number)	Follow-up (months)	RT Dose (GyRBE)	LC (%)	OS (%)	Severe late toxicity
Hug, 1999 (16)	Р	33	33 (median)	TD: 65–79 Dpf: 1.8–2	5-y: 59	5-y: 79	7%
Munzenrider, 1999 (17)	P + ph	169	41 (median)	TD: 66-83 Dpf: 1.8-1.9	5-y: 73 10-y: 54	5-y: 80 10-y: 54	Disaggregated data not reported or limited cohort followed-up for toxicity outcomes
Uhl, 2014 (18)	С	155	72 (median)	TD: 60 (median) Dpf: 3	5-y: 72	5-y: 85	0%
Weber, 2016 (19)	Р	151	50 (mean)	TD: 72.5 (mean) Dpf: 1.8–2	7-y: 70.9	7-y: 72.9	8%
Fung, 2018 (20)	P + ph	106	61 (mean)	TD: 8.4–73.8 Dpf: 1.8	5-y: 75	5-y: 88	7%
Koto, 2019 (21)	С	34	108 (median)	TD: 60.8 (median) DpF: 3.8 (median)	5-y: 77	5-y: 93	11%
Iannalfi, 2020 (22)	Р	135	49 (median) whole series	TD: 74 (median) Dpf: 1.8-2	5-y: 84	5-y: 83	12% (2% expected for tumor very close to optic nerve and/or pre- existing severe deficit). No G3 brain necrosis.
Iannalfi, 2020 (22)	с	65	49 (median) whole series	TD: 70,4 Dpf: 4.4	5-y: 71	5-y: 82	12% (2% expected for tumor very close to optic nerve and/or pre- existing severe deficit). No G3 brain necrosis.
Mattke, 2022 (23)	Р	36	36 (median)	TD: 74 (median) Dpf: 1.8-2	5-y: 61	5-y: 92	13% (cumulative rates of brain injury) G3 toxicity reported, but disaggregated data for G3 not reported
Mattke, 2022 (23)	С	111	52 (median)	TD: 66	5-y: 65	5-y: 83	13% (cumulative rates of brain injury) G3 toxicity reported, but disaggregated data for G3 not reported

TABLE 1 Patients and tr	reatment description of	chordomas irradiated with	proton or carbon ion	(selected series).
-------------------------	-------------------------	---------------------------	----------------------	--------------------

P, proton; C, carbon; RT, radiotherapy; TD, total dose; Dpf, dose per fraction; LC, local control; y, years; OS, overall survival.

Proton and carbon ion radiotherapy in skull base chordomas: a prospective study based on a dual particle and a patient-customized treatment strategy

Iannalfi A. et al, Neuro-Oncology,2020

135 patients, 2011/ 2018.

PT: 70 pts 74 Gy(RBE) in 37 fx

CIRT: 65 pts 70.4 Gy(RBE) in 16 fx

Median follow-up of 49 months

Proton and carbon ion radiotherapy in skull base chordomas: a prospective study based on a dual particle and a patient-customized treatment strategy

Particle choice (Protons or Carbon ion) criteria:

Unfavorable profile: CARBON IONS

- Macroscopic disease larger GTV
- Histological characteristics: dedifferentiated subtypes, higher proliferative index
- Proximity to critical organs compression of brainstem, optic pathway

Proton - Carbon ions plans: Steep dose gradient

Mobile Spine chordoma

Mobile Spine chordoma

En bloc resection: best results in terms of LC and DFS

The typical presentation often with intracanalar invasion makes difficult the surgery

Role of particle therapy well defined in adjuvant setting

High dose > 60-66 Gy(RBE) after separation surgery

Gained a role to avoid disabling surgery

Protons and carbon ion series for mobile spine chordoma

Authors	Nr pts	Modality RT	Median Dose	Local control	Survival rate
Schulz-Ertner D et al. 2003	16	CIRT / IMRT	68.4 GyRBE	~88% 3-year	~88% 3-y OS
Snider et al2015	100	Proton/photon	74GyRBE	63% 5-year	88% 5-y
Rutz et al. 2007	26	Proton +/- photon	72.0 GyRBE	86% 3-year	84% 3-year OS rate
DeLaney TF et al2014	23	Proton +/- photon	76.6 GyRBE	>96% 5-year	5-year actuarial OS 84%
Rotondo RL et al. 2015	95	Proton +/- photon	72.4 GyRBE	68% 5-year	82% 5-year OS rate
Indelicato D et al2016	26	Proton +/- photon	70.2 GyRBE	88% 4-year	83% 4-year OS rate
Matsumoto 2013	9	CIRT	70,4GyRBE	79% (5y)	52% (5y)
Shiba 2021	32	CIRT	70,4GyRBE	79,7% (3y)	69.8% (Зу)
Aoki 2022	19	CIRT	60,8GyRBE	75.2 (5y)	68.4% (5y)

Spine chordoma: preliminary outcome of CIRT @CNAO under evaluation

64 patients:

- 54 pts (85%) CIRT after R2 surgery
- 6 unresectable: definitive CIRT
- Total dose range was 66-70.4 GyRBE
- Follow-up: median 36.7 months (12.77 107.63)

Median TTR 26.4 months (12.4-84.2)

-

R

Skull base-mobile spine treatments common characteristics

Surgery and adjuvant hihg dose particle radiotherapy reccomended

Cooperation and case discussion between radiation oncologist and surgeon since pre-operative phase, sharing and taking into account:

- Prognostic factors in surgery perspective
- Prognostic factors radiation oncologist perspective
- Possibility of reconstruction (skull base) or orthopedical stabilization (mobile spine)
- Where expected necessity of metal implants : sharing timing and geometry of device affecting RT planning

Sacral chordoma

Sacral chordoma

More than the other sites:

□ Large mass at diagnosis

□Not suitable for wide margin resection

The most recognised indication for heavy particles \rightarrow CIRT in radical setting

Sacral chordoma

Heavy Ion Therapy Research Integratio

Wide margin surgery it is not always possible S1-S2 extension RT as an alternative to be considerated because of invalidating sequelae

Carbon ion series of definitive treatment for sacral chordoma

Series	Patients (n)	Median FUP (months)	LC (%)	OS (%)	Toxicity >G3 (n; events)
Imai 2016	188	62	77% (5y)	81% (5y)	9 ; skin disorders, peripheral nerve injuries
Demizu 2021 Multicentric study	219	56	72% (5y)	84%(5y)	13 ; skin disorders, myositis, etc.

Sacral chordoma preliminary outcome @CNAO

From March 2013: 163 pts treated with definitive CIRT

61 pts enrolled in international protocol from March 2018, were excluded

SAcral Chordoma: a Randomized & Observational study on surgery versus definitive radiation therapy in primary localized disease (SACRO)

10 pts with FUP < 12 months were excluded 6pts lost FUP

86 pts analised

Sacral Chordoma

Total dose range, 60 - 78.2 GyRBE Follow up median: 31.89 months (range, 12.2 - 126.12) Mediam TTR: 24.63 months

What we can do for better results

Expected learning curves

□ Improvement over the years

□Increasing collaborations with referral centers

□Improvements of treatment planning system

Better knowledge of LET and RBE distribution

Radiobiological model

Analisys of recurrences In Field relapse : pararectal site

baseline 03.2017 FUP 29 m, 08.2019

FUP 5 years, 06.2022

Radiobiological model: LEM vs MKM dosimetric comparison from 2019

ı's Horizon 2020 ıt No 101008548

Gy (RBE) 77.44

75.33

73.92

70.40 66.88

🍯 Q 👯

Gy (RBE)

77.44

73.92

70.40 66.88

Bowel displacement With spacer surgical implant is reccomended

SAcral Chordoma: a Randomized & Observational study on surgery versus definitive radiation therapy in primary localized disease (SACRO)

PROSPER Study:

A Comparative Effectiveness Trial of Carbon Ion Therapy, Surgery, and Proton Therapy for Pelvic Sarcomas involving the Bone

Pragmatic prospective trial of CIT versus surgery or proton therapy for pelvic sarcomas

Primary End Point: CIT less decline in PROMIS functional domain versus surgery 2nd End Point: Proton vs Carbon ion alone: 3 yr freedom from pelvic recurrence

CONCLUSIONS

Better treatment strategy for skull base and mobile spine: maximal safe resection or separation surgery from critical structures based on shared strategy followed by High Dose Particle Therapy

Definitive high dose CIRT could be a favorable strategy with acceptable toxicity for sacral chordoma where surgery is expected to be disabling.

□ Well dose coverage is important for LC improvement

Uvork in progress the optimization radiobiological model

Multidisciplinary discussion with specialized team is mandatory for sarcoma patients

Working together makes difference

Thank you !

